Skip to main content
Log in

Visitor or vector? The extent of rove beetle (Coleoptera: Staphylinidae) pollination and floral interactions

  • Review Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Beetles (Coleoptera) are a diverse group of overlooked pollinators, considered particularly important in tropical ecosystems. The role of the most diverse beetle family, Staphylinidae, as pollinators is generally considered minor, yet their relationships with plants are mostly unknown. Although often referred to as opportunistic visitors, it is arguable that the true extent of rove beetle pollination is underestimated given their frequency of visitation to flowers. This review comprehensively analysed the plant–pollinator or visitor interactions of the Staphylinidae and uncovered 108 well-described staphylinid–flower interactions across 27 seed plant families. Of these interactions, Staphylinidae were considered either potential or conclusive pollinators for 56 plant species, having either a primary or secondary role in pollination. Conversely, Staphylinidae were visitors to 40 plant species with a negligible role in pollination. For the remaining 12 interactions and additional anecdotal reports, the role of staphylinids as pollinators was unresolved. Staphylinid–flower interactions were most prevalent in the monocots and magnoliids (families: Araceae, Annonaceae, Arecaceae, and Magnoliaceae) involving predominantly generalist pollination systems, and interactions were limited to six staphylinid subfamilies (Omaliinae, Tachyporinae, Aleocharinae, Oxytelinae, Paederinae, and Staphylininae). Trends in the involvement of staphylinid subfamilies with particular plant lineages were identified, associated with differences in insect habit and floral rewards. Overall this review indicates that the role of Staphylinidae as pollinators, and Coleoptera as a whole, is underestimated. Caution, however, must be given to inferring the role of staphylinids in pollination because rove beetles commonly function as inadvertent secondary pollinators or antagonists there to fulfil other ecological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albre J, Quilichini A, Gibernau M (2003) Pollination ecology of Arum italicum (Araceae). Bot J Linn Soc 141:205–214. https://doi.org/10.1046/j.1095-8339.2003.00139.x

    Article  Google Scholar 

  • Aliscioni SS, Achler AP, Torretta JP (2017) Floral anatomy, micromorphology and visitor insects in three species of Aristolochia L. (Aristolochiaceae). NZ J Bot 55:496–513. https://doi.org/10.1080/0028825X.2017.1380051

    Article  Google Scholar 

  • Anderson AB, Overal WL, Henderson A (1988) Pollination ecology of a forest-dominant palm (Orbignya phalerata Mart.) in Northern Brazil. Biotropica 20:192–205. https://doi.org/10.2307/2388234

    Article  Google Scholar 

  • APG (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  • Armstrong JE, Irvine AK (1989) Floral biology of Myristica insipida (Myristicaceae), a distinctive beetle pollination syndrome. Am J Bot 76:86–94

    Article  Google Scholar 

  • Barfod AS, Hagen M, Borchsenius F (2011) Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann Bot 108:1503–1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Bawa KS (1990) Plant–pollinator interactions in tropical rain forests. Ann Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  • Beath DN (1999) Dynastine scarab beetle pollination in Dieffenbachia longispatha (Araceae) on Barro Colorado Island (Panama) compared with La Selva Biological Station (Costa Rica). Aroideana 22:63–71

    Google Scholar 

  • Bernal R, Ervik F (1996) Floral biology and pollination of the dioecious palm Phytelephas seemannii in Colombia: an adaptation to staphylinid beetles. Biotropica 28:682–696. https://doi.org/10.2307/2389054

    Article  Google Scholar 

  • Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Syst Evol 222:293–320

    Article  Google Scholar 

  • Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Syst Evol 156:159–176

    Article  Google Scholar 

  • Blanche R, Cunningham SA (2005) Rain forest provides pollinating beetles for Atemoya crops. J Econ Entomol 98:1193–1201. https://doi.org/10.1603/0022-0493-98.4.1193

    Article  PubMed  Google Scholar 

  • Boyce PC (2008) A taxonomic revision of Biarum. Curtis’s Botanical Magazine 25:2–17

    Article  Google Scholar 

  • Brodie BS, Renyard A, Gries R, Zhai H, Ogilvie S, Avery J, Gries G (2018) Identification and field testing of floral odorants that attract the rove beetle Pelecomalium testaceum (Mannerheim) to skunk cabbage, Lysichiton americanus (L.). Arthropod–Plant Interact 12:591–599. https://doi.org/10.1007/s11829-018-9607-z

    Article  Google Scholar 

  • Buchmann S (2015) Pollination in the Sonoran desert region. In: Phillips SJ, Comus PW, Dimmitt MA, Brewer LM (eds) A natural history of the Sonoran Desert, 2nd edn. Arizona-Sonora Desert Museum Press, Tucson, and University of California Press, Oakland, pp 124–129

    Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington D.C.

    Google Scholar 

  • Burgess KS, Singfield J, Melendez V, Kevan PG (2004) Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Ann Missouri Bot Gard 91:346–356

    Google Scholar 

  • Búrquez A, Sarukhán J, Pedroza AL (1987) Floral biology of a primary rain forest palm, Astrocaryum mexicanum Liebm. Bot J Linn Soc 94:407–419

    Article  Google Scholar 

  • Cai C, Leschen RA, Hibbett DS, Xia F, Huang D (2017) Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous. Nat Commun 8:14894. https://doi.org/10.1038/ncomms14894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Escalona HE, Li L, Yin Z, Huang D, Engel MS (2018) Beetle pollination of cycads in the Mesozoic. Curr Biol 28:1–7. https://doi.org/10.1016/j.cub.2018.06.036

    Article  CAS  Google Scholar 

  • Caleca V, Verde GL, Ragusa S, Tsolakis H (2002) Insect and hand pollination of Annona spp. in Sicily. Phytophaga 12:117–127

    Google Scholar 

  • Cardinal S, Danforth BN (2013) Bees diversified in the age of eudicots. Proc R Soc B 280:20122686. https://doi.org/10.1098/rspb.2012.2686

    Article  PubMed  Google Scholar 

  • Chan YM, Saw LG (2011) Notes on the pollination ecology of the palm genus Johannesteijsmannia (Arecaceae). J Pollinat Ecol 6:108–117

    Article  Google Scholar 

  • Chen G, Zhang RR, Liu Y, Sun WB (2014) Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects. J Chem Ecol 40:893–899. https://doi.org/10.1007/s10886-014-0481-6

    Article  CAS  PubMed  Google Scholar 

  • Coetzee JH, Giliomee JH (1985) Insects in association with the inflorescence of Protea repens (L.) (Proteaceae) and their role in pollination. J Ent Soc Sth Afr 48:303–314

    Google Scholar 

  • Copete JC, Flórez DM, Núñez-Avellaneda LA (2018) Pollination ecology of the Manicaria saccifera (Arecaceae): a rare case of pollinator exclusion. In: Mokwala PW (ed) Pollination in plants. IntechOpen, London, pp 23–37

    Google Scholar 

  • Corlett TR (2004) Flower visitors and pollination in the Oriental (Indomalayan) region. Biol Rev 79:497–532. https://doi.org/10.1017/S1464793103006341

    Article  PubMed  Google Scholar 

  • Cortes V, Gómez D, Núñez-Avellaneda LA (2018) Relación de visitantes florales con las fases florales de Carludovica palmata (Ruiz & Pav 1798) (Cyclanthaceae) en bosque seco tropical en Colombia. Entomologia mexicana 4:315–321

    Google Scholar 

  • Davis ALV (1994) Associations of Afrotropical Coleoptera (Scarabaeidae: Aphodiidae: Staphylinidae: Hydrophilidae: Histeridae) with dung and decaying matter: implications for selection of fly-control agents for Australia. J Nat Hist 28:383–399. https://doi.org/10.1080/00222939400770171

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. https://doi.org/10.1073/pnas.0709472105

    Article  PubMed  Google Scholar 

  • Dieringer G, Espinosa JE (1994) Reproductive ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Bull Torrey Bot Club 121:154–159

    Article  Google Scholar 

  • Dieringer G, Cabrera L, Lara M, Loya L, Reyes-Castillo P (1999) Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int J Plant Sci 160:64–71. https://doi.org/10.1086/314099

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406. https://doi.org/10.1126/science.1251817

    Article  CAS  Google Scholar 

  • Dransfield J (1972) The genus Johannesteijsmannia H.E. Moore Jr. Gard Bull 26:63–83

    Google Scholar 

  • Dransfield J (1979) A Monograph of Ceratolobus (Palmae). Kew Bull 34:1–33

    Article  Google Scholar 

  • Drummond DC, Hammond PM (1991) Insects visiting Arum dioscoridis Sm. and A. orientale M. Bieb. Entomol Mon Mag 127:151–155

    Google Scholar 

  • Drummond DC, Hammond PM (1993) Insects visiting Arum creticum Boiss. & Heldr., A. concinnatum Schott and A. purpureospathum Boyce. Entomol Mon Mag 129:245–252

    Google Scholar 

  • Echegaray EA, Cloyd RA, Nechols JR (2015) Rove beetle (Coleoptera: Staphylinidae) predation on Bradysia sp. nr. coprophila (Diptera: Sciaridae). J Entomol Sci 50:225–237. https://doi.org/10.18474/JES14-38.1

    Article  Google Scholar 

  • Endara L, Grimaldi DA, Roy BA (2010) Lord of the flies: pollination of Dracula orchids. Lankesteriana 10:1–11

    Article  Google Scholar 

  • Endress PK, Lorence DH (1983) Diversity and evolutionary trends in the floral structure of Tambourissa (Monimiaceae). Plant Syst Evol 143:53–81

    Article  Google Scholar 

  • Ervik F, Feil JP (1997) Reproductive biology of the monoecious understory palm Prestoea schultzeana in Amazonian Ecuador. Biotropica 29:309–317

    Article  Google Scholar 

  • Ervik F, Tollsten L, Knudsen JT (1999) Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae). Plant Syst Evol 217:279–297

    Article  Google Scholar 

  • Escaravage N, Wagner J (2004) Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biol 6:606–615. https://doi.org/10.1055/s-2004-821143

    Article  CAS  PubMed  Google Scholar 

  • Faegri K, Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Farrell BD (1998) “Inordinate fondness” explained: why are there so many beetles? Science 281:555–559. https://doi.org/10.1126/science.281.5376.555

    Article  CAS  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347

    Article  Google Scholar 

  • Forsyth A, Alcock J (1990) Ambushing and prey-luring as alternative foraging tactics of the fly-catching rove beetle Leistotrophus versicolor (Coleoptera: Staphylinidae). J Insect Behav 3:703–718

    Article  Google Scholar 

  • Frank JH, Barrera R (2010) Natural history of Belonuchus Nordmann spp. and allies (Coleoptera: Staphylinidae) in Heliconia L. (Zingiberales: Heliconiaceae) flower bracts. Insecta Mundi 0110:1–12

    Google Scholar 

  • Frank JH, Morón MA (2012) Natural history of four species of Platydracus Thomson (Coleoptera: Staphylinidae) in Heliconia bourgaeana Petersen (Zingiberales: Heliconiaceae) flower bracts. Insecta Mundi 0258:1–12

    Google Scholar 

  • Frank JH, Nadel H (2012) Life cycle and behaviour of Charoxus spinifer and Charoxus major (Coleoptera: Staphylinidae: Aleocharinae), predators of fig wasps (Hymenoptera: Agaonidae). J Nat Hist 46:621–635. https://doi.org/10.1080/00222933.2011.651641

    Article  Google Scholar 

  • Gamboa-Gaitán MA (1997) Biologia reproductiva de Eschweilera bogotensis (Lecythidaceae), en la cordillera occidental de Colombia. Caldasia 19:479–485

    Google Scholar 

  • García-Robledo C, Quintero-Marín P, Mora-Kepfer F (2005) Geographic variation and succession of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 37:650–656. https://doi.org/10.1111/j.1744-7429.2005.00082.x

    Article  Google Scholar 

  • Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143. https://doi.org/10.1086/314195

    Article  CAS  PubMed  Google Scholar 

  • Gobbi M, Avesani D, Parolo G, Scupola A, Zanetti A, Bonomi C (2017) Flower-visiting insects observed on the critically endangered alpine plant species Callianthemum kernerianum Freyn ex A. Kerner (Ranunculaceae). J Insect Biodivers 5:1–4. https://doi.org/10.12976/jib/2017.5.6

    Article  Google Scholar 

  • Gómez JM, Zamora R (2006) Ecological factors that promote the evolution of generalization in pollination systems. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions from specialization to generalization. The University of Chicago Press, Chicago, pp 145–166

    Google Scholar 

  • Gottsberger G (1989) Comments on flower evolution and beetle pollination in the genera Annona and Rollinia (Annonaceae). Plant Syst Evol 167:189–194

    Article  Google Scholar 

  • Gottsberger G (1991) Pollination of some species of the Carludovicoideae, and remarks on the origin and evolution of the Cyclanthaceae. Bot Jahrb Syst 113:221–235

    Google Scholar 

  • Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biol 14:143–152. https://doi.org/10.1046/j.1442-1984.1999.00018.x

    Article  Google Scholar 

  • Gottsberger G (2012) How diverse are Annonaceae with regard to pollination? Bot J Linn Soc 169:245–261. https://doi.org/10.1111/j.1095-8339.2011.01209.x

    Article  Google Scholar 

  • Gottsberger G (2016) Generalist and specialist pollination in basal angiosperms (ANITA grade, basal monocots, magnoliids, Chloranthaceae and Ceratophyllaceae): what we know now. Plant Divers Evol 131:263–362. https://doi.org/10.1127/pde/2015/0131-0085

    Article  Google Scholar 

  • Gottsberger G, Meinke S, Porembski S (2011) First records of flower biology and pollination in African Annonaceae: Isolona, Piptostigma, Uvariodendron, Monodora and Uvariopsis. Flora 206:498–510. https://doi.org/10.1016/j.flora.2010.08.005

    Article  Google Scholar 

  • Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Missouri Bot Gard 86:373–406. https://doi.org/10.2307/2666181

    Article  Google Scholar 

  • Hahn M, Brühl CA (2016) The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod–Plant Interact 10:21–28. https://doi.org/10.1007/s11829-016-9414-3

    Article  Google Scholar 

  • Heiser CB (1962) Some observations on pollination and compatibility in Magnolia. Proc Indiana Acad Sci 72:259–266

    Google Scholar 

  • Hemachandra KS, Holliday NJ, Mason PG, Soroka JJ, Kuhlmann U (2007) Comparative assessment of the parasitoid community of Delia radicum in the Canadian prairies and Europe: a search for classical biological control agents. Biol Control 43:85–94. https://doi.org/10.1016/j.biocontrol.2007.07.005

    Article  Google Scholar 

  • Henderson A (1986) A review of pollination studies in the Palmae. Bot Rev 52:221–259

    Article  Google Scholar 

  • Henderson A, Pardini R, Rebello JFDS, Vanin S, Almeida D (2000) Pollination of Bactris (Palmae) in an Amazon forest. Brittonia 52:160–171

    Article  Google Scholar 

  • Higuchi H, Tsukada M, Yoshida A, Furukawa T (2014) Effective pollinators among Japanese fauna of the insect visitors of Cherimoya (Annona cherimola Mill.). Trop Agr Develop 58:33–36

    Google Scholar 

  • Hirayama K, Ishida K, Tomaru N (2005) Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata. Ann Bot 95:1009–1015. https://doi.org/10.1093/aob/mci107

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoe YC, Wong SY (2016) Floral biology of Schismatoglottis baangongensis (Araceae) in West Sarawak, Borneo. Plant Syst Evol 302:1239–1252. https://doi.org/10.1007/s00606-016-1329-z

    Article  CAS  Google Scholar 

  • Hoe YC, Wong SY, Boyce PC, Wong MH, Chan MKY (2011) Studies on Homalomeneae (Araceae) of Borneo VII: Homalomena debilicrista, a new species from Malaysian Borneo, and observations of its pollination mechanics. Plant Div Evol 129:77–87. https://doi.org/10.1127/1869-6155/2011/0129-0045

    Article  Google Scholar 

  • Hoe YC, Gibernau M, Wong SY (2018) Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae). Plant Biol (Stuttg) 20:563–578. https://doi.org/10.1111/plb.12687

    Article  CAS  Google Scholar 

  • Howard FW, Moore D, Giblin-Davis RM, Abad RG (2001) Insects on palms. CABI, Wallingford

    Book  Google Scholar 

  • Hunt T et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916. https://doi.org/10.1126/science.1146954

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kato M, Kakutani T, Suka T, Itino T (1990) Insect-flower relationship in the temperate deciduous forest of Kibune, Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits. Contr Biol Lab Kyoto Univ 27:377–463

    Google Scholar 

  • Irmler U, Lipkow E (2018) Effect of environmental conditions on distribution patterns of rove beetles. In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae), life history, evolution, ecology and distribution. Springer, Cham, pp 117–144

    Chapter  Google Scholar 

  • Irmler U, Klimaszewski J, Betz O (2018) Introduction to the biology of rove beetles. In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae), life history, evolution, ecology and distribution. Springer, Cham, pp 1–4

    Google Scholar 

  • Irvine AK, Armstrong JB (1990) Beetle pollination in tropical forests of Australia. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants, vol 7. UNESCO Paris and the Parthenon Publishing Group, New York, pp 135–149

    Google Scholar 

  • Ishida K (1996) Beetle pollination of Magnolia praecocissima var. borealis. Plant Species Biol 11:199–206

    Article  Google Scholar 

  • Jürgens A, Webber AC, Gottsberger G (2000) Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 55:551–558. https://doi.org/10.1016/S0031-9422(00)00241-7

    Article  PubMed  Google Scholar 

  • Kato M, Kawakita A (2004) Plant–pollinator interactions in New Caledonia influenced by introduced honey bees. Am J Bot 91:1814–1827

    Article  PubMed  Google Scholar 

  • Kato M, Matsumoto M, Kato T (1993) Flowering phenology and anthophilous insect community in the cool-temperate subalpine forests and meadows at Mt. Kushigata in the central part of Japan. Contr Biol Lab Kyoto Univ 28:119–172

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Ann Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kevan PG (1975) Pollination and environmental conservation. Environ Conserv 2:293–298

    Article  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818. https://doi.org/10.1111/2041-210X.12074

    Article  Google Scholar 

  • Kite GC et al (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 295–315

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  • Klimaszewski J, Sturm H (1991) Four new species of the Oxypodine genus Polylobus Solier (Coleoptera: Staphylinidae: Aleocharinae) collected on the flower heads of some high Andean giant rosette plants (Espeletiinae: Asteraceae). Coleopt Bull 45:1–13

    Google Scholar 

  • Klimaszewski J, Pace R, Center TD, Couture J (2010) A remarkable new species of Himalusa Pace from Thailand (Coleoptera, Staphylinidae, Aleocharinae): phytophagous aleocharine beetle with potential for bio-control of skunkvine-related weeds in the United States. ZooKeys 35:1–12. https://doi.org/10.3897/zookeys.35.329

    Article  Google Scholar 

  • Klinger R (1983) Eusphaleren, blütenbesuchende Staphyliniden 1) Zur biologie der Käfer (Col., Staphylinidae). Deutsche Entomologische Zeitschrift N F 30:37–44

    Article  Google Scholar 

  • Knoll F (1926) Insekten und blumen IV. Die Arum-Blütenstände und ihre besucher. Abh K K der Zool-Bot. Ges Wien 12:383–481

    Google Scholar 

  • Knudsen JT, Tollsten L, Ervik F (2001) Flower scent and pollination in selected neotropical palms. Plant Biol (Stuttg) 3:642–653

    Article  Google Scholar 

  • Koch K (1989) Die Käfer Mitteleuropas, Ökologie E1. Goecke and Evers, Krefeld

    Google Scholar 

  • Koschnitzke C (2015) Pollinators and floral visitors of three Asclepiadoideae (Apocynaceae) taxa in sandy coast vegetation of Rio de Janeiro, Brazil. Natureza on line 13:165–176

    Google Scholar 

  • Küchmeister H, Silberbauer-Gottsberger I, Gottsberger G (1997) Flowering, pollination, nectar standing crop, and nectaries of Euterpe precatoria (Arecaceae), an Amazonian rain forest palm. Plant Syst Evol 206:71–97

    Article  Google Scholar 

  • Küchmeister H, Webber AC, Silberbauer-Gottsberger I, Gottsberger G (1998) A polinização e sua relação com a termogênese em espécies de Arecaceae e Annonaceae da Amazônia Central. Acts Amazon 28:217–245

    Article  Google Scholar 

  • Kullenberg B (1953) Observationer över Arum-pollinerare i Libanons kustområde. Svensk Bot Tidskr 47:24–29

    Google Scholar 

  • Lara CE, Díez MC, Restrepo Z, Núñez LA, Moreno F (2017) Flowering phenology and flower visitors of the Macana Palm Wettinia kalbreyeri (Arecaceae) in an Andean montane forest. Revista Mexicana de Biodiversidad 88:106–112. https://doi.org/10.1016/j.rmb.2017.01.001

    Article  Google Scholar 

  • Lau JYY, Guo X, Pang C-C, Tang CC, Thomas DC, Saunders RMK (2017) Time-dependent trapping of pollinators driven by the alignment of floral phenology with insect circadian rhythms. Front Plant Sci 8:1119. https://doi.org/10.3389/fpls.2017.01119

    Article  PubMed  PubMed Central  Google Scholar 

  • Listabarth C (1996) Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica 28:69–81. https://doi.org/10.2307/2388772

    Article  Google Scholar 

  • Listabarth C (2001) Palm pollination by bees, beetles and flies: why pollinator taxonomy does not matter. The case of Hyospathe elegans (Arecaceae, Arecoidae, Areceae, Euterpeinae). Plant Species Biol 16:165–181

    Article  Google Scholar 

  • Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc Natl Acad Sci USA 115:E10397–E10406. https://doi.org/10.1073/pnas.1722477115

    Article  CAS  PubMed  Google Scholar 

  • López-García MM, Marín-Gómez OH (2018) Description and notes on natural history of a new species of Parosus Sharp, 1887 (Coleoptera, Staphylinidae, Oxytelinae) living in floral bracts of Columnea medicinalis L. (Gesneriaceae). Zootaxa 4394:559–566. https://doi.org/10.11646/zootaxa.4394.4.6

    Article  PubMed  Google Scholar 

  • López-García MM, Méndez-Rojas DM, Cárdenas RG (2011) Staphylinidae y Nitidulidae (Coleoptera) asociados a inflorescencias de Etlingera elatior (Zingiberaceae). Rev Colomb Entomol 37:357–359

    Google Scholar 

  • Lora J, Larranaga N, Hormaza JI (2018) Genetics and breeding of fruit crops in the Annonaceae family: Annona spp. and Asimina spp. In: Al-Khayru JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: fruits, vol 3. Springer, Cham, pp 651–672

    Chapter  Google Scholar 

  • Lorence DH (1985) A monograph of the Monimiaceae (Laurales) in the Malagasy region (Southwest Indian Ocean). Ann Missouri Bot Gard 72:1–165. https://doi.org/10.2307/2399135

    Article  Google Scholar 

  • Losapio G et al (2016) Feedback effects between plant and flower-visiting insect communities along a primary succession gradient. Arthropod–Plant Interact 10:485–495. https://doi.org/10.1007/s11829-016-9444-x

    Article  Google Scholar 

  • Luo SX, Zhang LJ, Yuan S, Ma ZH, Zhang DX, Renner SS (2018) The largest early-diverging angiosperm family is mostly pollinated by ovipositing insects and so are most surviving lineages of early angiosperms. Proc R Soc B 285:20172365. https://doi.org/10.1098/rspb.2017.2365

    Article  PubMed  Google Scholar 

  • Madison M (1981) Notes on Caladium (Araceae) and its allies. Selbyana 5:342–377

    Google Scholar 

  • Maia ACD, Schlindwein C, Navarro DMAF, Gibernau M (2010) Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Int J Plant Sci 171:740–748. https://doi.org/10.1086/654846

    Article  Google Scholar 

  • Marín-Gómez OH, López-García MM, Vanderhuck MG (2016) Floral visitors of Inga marinata Willd. (Mimosaceae) in a coffee agroecosystem of Quindío, Colombia. Trop Ecol 57:649–654

    Google Scholar 

  • Mawdsley JR (2003) The importance of species of Dasytinae (Coleoptera: Melyridae) as pollinators in western North America. Coleopt Bull 57:154–160

    Article  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365. https://doi.org/10.1111/j.1461-0248.2006.00975.x

    Article  PubMed  Google Scholar 

  • Medan D (1994) Reproductive biology of Frangula alnus (Rhamnaceae) in southern Spain. Plant Syst Evol 193:173–186

    Article  Google Scholar 

  • Meeuse BJD, Hatch MH (1960) Beetle pollination in Drancunculus and Sauromatum (Araceae). Coleopt Bull 14:70–74

    Google Scholar 

  • Mertens JEJ, Tropek R, Dzekashu FF, Maicher V, Fokam EB, Janeček S (2017) Communities of flower visitors of Uvariopsis dioica (Annonaceae) in lowland forests of Mt. Cameroon, with notes on its potential pollinators. Afr J Ecol 56:146–152. https://doi.org/10.1111/aje.12429

    Article  Google Scholar 

  • Momose K et al (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant–pollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501

    Article  CAS  PubMed  Google Scholar 

  • Moore MR, Jameson ML (2013) Floral associations of cyclocephaline scarab beetles. J Insect Sci 13:1–43. https://doi.org/10.1673/031.013.10001

    Article  Google Scholar 

  • National Research Council (2007) Status of pollinators in North America. The National Academies Press, Washington D.C.

    Google Scholar 

  • Nauheimer L, Boyce PC (2013) Englerarum (Araceae, Aroideae): a new genus supported by plastid and nuclear phylogenies. Plant Syst Evol 300:709–715. https://doi.org/10.1007/s00606-013-0914-7

    Article  Google Scholar 

  • Newton AF (2015) Beetles (Coleoptera) of Peru: a survey of families. Staphylinidae Latreille, 1802. J Kansas Entomol Soc 88:283–304. https://doi.org/10.2317/kent-88-02-283-304.1

    Article  Google Scholar 

  • Núñez-Avellaneda LA, Rojas-Robles R (2008) Biologia reproductiva y ecologia de la polinización de la palma milpesos Oenocarpus batau a en los Andes Colombianos. Caldasia 30:101–125

    Google Scholar 

  • Oguri S, Sakamaki K, Sakamoto H, Kubota K (2019) Compositional changes of the floral scent volatile emissions from Asian skunk cabbage (Symplocarpus renifolius, Araceae) over flowering sex phases. Phytochem Anal 30:139–147. https://doi.org/10.1002/pca.2799

    Article  CAS  PubMed  Google Scholar 

  • Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919

    Article  Google Scholar 

  • Ollerton J, Johnson SD, Cranmer L, Kellie S (2003) The pollination ecology of an assemblage of grassland Asclepiads in South Africa. Ann Bot 92:807–834. https://doi.org/10.1093/aob/mcg206

    Article  PubMed  PubMed Central  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

    Article  Google Scholar 

  • Ollerton J, Rech AR, Waser NM, Price MV (2015) Using the literature to test pollination syndromes - some methodological cautions. J Pollinat Ecol 16:119–125

    Google Scholar 

  • Patt JM, Merchant MW, Williams DRE, Meeuse BJD (1989) Pollination biology of Platanthera stricta (Orchidaceae) in Olympic National Park, Washington. Am J Bot 76:1097–1106

    Article  Google Scholar 

  • Pellmyr O (1992) Evolution of insect pollination and angiosperm diversification. Trends Ecol Evol 7:46–49

    Article  CAS  PubMed  Google Scholar 

  • Pellmyr O, Patt JM (1986) Function of olfactory and visual stimuli in pollination of Lysichiton Americanum (Araceae) by a staphylinid beetle. Madroño 33:47–54

    Google Scholar 

  • Peña JE, Nadel H, Barbosa-Pereira M, Smith D (2002) Pollinators and pests of Annona species. In: Peña JE, Sharp JL, Wysoki M (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control. CABI, Oxfordshire, pp 197–221

    Chapter  Google Scholar 

  • Pérez AEN (2014) Interacciones y diversidad de estafilínidos (Coleoptera: Staphylinidae) asociados a inflorescencias de palmas silvestres en el Pacífico colombiano. Dissertation, Universidad Nacional de Colombia

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Procheş S, Johnson SD (2009) Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am J Bot 96:1722–1730. https://doi.org/10.3732/ajb.0800377

    Article  CAS  PubMed  Google Scholar 

  • Quilichini A, Macquart D, Barabé D, Albre J, Gibernau M (2010) Reproduction of the West Mediterranean endemic Arum pictum (Araceae) on Corsica. Plant Syst Evol 287:179–187. https://doi.org/10.1007/s00606-010-0312-3

    Article  Google Scholar 

  • Rader R et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 113:146–151. https://doi.org/10.1073/pnas.1517092112

    Article  CAS  PubMed  Google Scholar 

  • Ramsey MW (1988) Differences in pollinator effectiveness of birds and insects visiting Banksia menziesii (Proteaceae). Oecologia 76:119–124

    Article  CAS  PubMed  Google Scholar 

  • Ratnayake RMCS, Gunatilleke IAUN, Wijesundara DSA, Saunders RMK (2006) Reproductive biology of two sympatric species of Polyalthia (Annonaceae) in Sri Lanka. I. Pollination by curculionid beetles. Int J Plant Sci 167:483–493

    Article  Google Scholar 

  • Reverté S, Retana J, Gómez JM, Bosch J (2016) Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Ann Bot 118:249–257. https://doi.org/10.1093/aob/mcw103

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400. https://doi.org/10.1111/ele.12224

    Article  PubMed  Google Scholar 

  • Sahli HF, Conner JK (2006) Characterizing ecological generalization in plant-pollination systems. Oecologia 148:365–372. https://doi.org/10.1007/s00442-006-0396-1

    Article  PubMed  Google Scholar 

  • Sakai S (2002) Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–534

    Article  PubMed  Google Scholar 

  • Sakai S, Inoue T (1999) A new pollination system: dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86:56–61

    Article  CAS  PubMed  Google Scholar 

  • Saunders RMK (2012) The diversity and evolution of pollination systems in Annonaceae. Bot J Linn Soc 169:222–244. https://doi.org/10.1111/j.1095-8339.2011.01208.x

    Article  Google Scholar 

  • Sayers TDJ (2019) The ecology and evolution of plant–pollinator interactions in Australian Typhonium (Araceae). Dissertation, The University of Melbourne

  • Scheerpeltz O (1927) Ein Staphylinide als blütenschädling (Col.). Koleopterol Rundsch 13:1–9

    Google Scholar 

  • Schiestl FP, Dötterl S (2012) The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias? Evolution 66:2042–2055. https://doi.org/10.1111/j.1558-5646.2012.01593.x

    Article  CAS  PubMed  Google Scholar 

  • Seres A, Ramírez N (1995) Biologia floral y polinizacion de algunas Monocotiledoneas de un bosque nublado Venezolano. Ann Missouri Bot Gard 82:61–81. https://doi.org/10.2307/2399981

    Article  Google Scholar 

  • Setsuko S, Nagamitsu T, Tomaru N (2013) Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations. BMC Ecol 13:1–12. https://doi.org/10.1186/1472-6785-13-10

    Article  Google Scholar 

  • Sharma MV, Shivanna KR (2011) Pollinators, pollination efficiency and fruiting success in a wild nutmeg, Myristica dactyloides. J Trop Ecol 27:405–412. https://doi.org/10.1017/S0266467411000174

    Article  Google Scholar 

  • Silberbauer-Gottsberger I, Gottsberger G, Webber AC (2003) Morphological and functional flower characteristics of New and Old World Annonaceae with respect to their mode of pollination. Taxon 52:1–18

    Article  Google Scholar 

  • Sivadasan M, Kavalan R (2005) Flowering phenology and beetle pollination in Theriophonum infaustum N.E.Br. (Araceae). Aroideana 28:104–112

    Google Scholar 

  • Ślipiński SA, Leschen RAB, Lawrence JF (2011) Order Coleoptera Linnaeus, 1758. In: Z-Q Zhang (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:203–208

    Article  Google Scholar 

  • Smith-Ramírez C, Martinez P, Nuñez M, González C, Armesto JJ (2005) Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot J Linn Soc 147:399–416. https://doi.org/10.1111/j.1095-8339.2005.00388.x

    Article  Google Scholar 

  • Stavert JR, Liñán-Cembrano G, Beggs JR, Howlett BG, Pattemore DE, Bartomeus I (2016) Hairiness: the missing link between pollinators and pollination. PeerJ 4:e2779. https://doi.org/10.7717/peerj.2779

    Article  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, 1: Pollination mechanisms. Ann Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Steel WO (1970) The larvae of the genera of the Omaliinae (Coleoptera: Staphylinidae) with particular reference to the British fauna. Trans R Ent Soc Lond 122:1–47. https://doi.org/10.1111/j.1365-2311.1970.tb00524.x

    Article  Google Scholar 

  • Steenhuisen S-L, Johnson SD (2012) Evidence for beetle pollination in the African grassland sugarbushes (Protea: Proteaceae). Plant Syst Evol 298:857–869. https://doi.org/10.1007/s00606-012-0589-5

    Article  Google Scholar 

  • Steinbach K, Gottsberger G (1994) Phenology and pollination biology of five Ranunculus species in Giessen, central Germany. Phyton (Horn Austria) 34:203–218

    Google Scholar 

  • Steinhoff G (1980) Daily and seasonal interactions between salmonberry (Rubus spectabilis) and bumblebees (Bombus sitkensis) in southwestern British Columbia. Dissertation, The University of British Columbia

  • Straarup M, Hoppe LE, Pooma R, Barfod AS (2018) The role of beetles in the pollination of the mangrove palm Nypa fruticans. Nord J Bot 36:e01967. https://doi.org/10.1111/njb.01967

    Article  Google Scholar 

  • Takano KT, Repin R, Mohamed MB, Toda MJ (2012) Pollination mutualism between Alocasia macrorrhizos (Araceae) and two taxonomically undescribed Colocasiomyia species (Diptera: Drosophilidae) in Sabah, Borneo. Plant Biol 14:555–564. https://doi.org/10.1111/j.1438-8677.2011.00541.x

    Article  PubMed  Google Scholar 

  • Thayer MK (2016) 14.7 Staphylinidae Latreille, 1802. In: Beutel RG, Leschen RAB (eds) Handbook of Zoology, Arthropoda: Insecta; Coleoptera, beetles. Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim), 2nd edn. De Gruyter, Berlin, pp 394–442

    Google Scholar 

  • Thien LB (1974) Floral biology of Magnolia. Am J Bot 61:1037–1045

    Article  Google Scholar 

  • Thien LB, Azuma H, Kawano S (2000) New perspectives on the pollination biology of basal angiosperms. Int J Plant Sci 161:S225–S235. https://doi.org/10.1086/317575

    Article  Google Scholar 

  • Tsukada M, Higuchi H, Furukawa T, Yoshida A (2005) Flower visitors to cherimoya, Annona cherimola (Magnoliales: Annonaceae) in Japan. Appl Entomol Zool 40:317–324. https://doi.org/10.1303/aez.2005.317

    Article  Google Scholar 

  • Uemura S, Ohkawara K, Kudo G, Wada N, Higashi S (1993) Heat-production and cross-pollination of the Asian Skunk Cabbage Symplocarpus renifolius (Araceae). Am J Bot 80:635–640

    Article  Google Scholar 

  • Urru I, Stökl J, Linz J, Krügel T, Stensmyr MC, Hansson BS (2010) Pollination strategies in Cretan Arum lilies. Biol J Linn Soc 101:991–1001. https://doi.org/10.1111/j.1095-8312.2010.01537.x

    Article  Google Scholar 

  • Urru I, Stensmyr MC, Hansson BS (2011) Pollination by brood-site deception. Phytochemistry 72:1655–1666. https://doi.org/10.1016/j.phytochem.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  • Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094. https://doi.org/10.1111/j.1461-0248.2005.00810.x

    Article  Google Scholar 

  • Vislobokov NA, Galinskaya TV (2018) Pollination ecology of two co-occurring species of Balanophora: differences in range of visitors and pollinators. Int J Plant Sci 179:341–349. https://doi.org/10.1086/697320

    Article  Google Scholar 

  • Vislobokov NA, Nuraliev MS, Galinskaya TV (2017) Pollination ecology of Lowiaceae (Zingiberales): nocturnal carrion-beetle pollination of Orchidantha virosa. Int J Plant Sci 178:302–312. https://doi.org/10.1086/690910

    Article  Google Scholar 

  • Vizentin-Bugoni J, Maruyama PK, Souza CS, Ollerton J, Rech AR, Sazima M (2018) Plant–pollinator networks in the tropics: a review. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics. Springer, Cham, pp 73–91

    Chapter  Google Scholar 

  • Wang B, Chen G, Li C, Sun W (2017) Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China. Plant Divers 39:52–59. https://doi.org/10.1016/j.pld.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardhaugh CW (2015) How many species of arthropods visit flowers? Arthropod–Plant Interact 9:547–565. https://doi.org/10.1007/s11829-015-9398-4

    Article  Google Scholar 

  • Wardhaugh CW, Stork NE, Edwards W, Grimbacher PS (2012) The overlooked biodiversity of flower-visiting invertebrates. PLoS ONE 7:e45796. https://doi.org/10.1371/journal.pone.0045796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardhaugh CW, Edwards W, Stork NE (2013a) Variation in beetle community structure across five microhabitats in Australian tropical rainforest trees. Insect Conserv Divers 6:463–472. https://doi.org/10.1111/icad.12001

    Article  Google Scholar 

  • Wardhaugh CW, Stork NE, Edwards W (2013b) Specialization of rainforest canopy beetles to host trees and microhabitats: not all specialists are leaf-feeding herbivores. Biol J Linn Soc 109:215–228

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060. https://doi.org/10.2307/2265575

    Article  Google Scholar 

  • Washitani I, Okayama Y, Sato K, Takahashi H, Ohgushi T (1996) Spatial variation in female fertility related to interactions with flower consumers and pathogens in a forest metapopulation of Primula sieboldii. Res Popul Ecol 38:249–256

    Article  Google Scholar 

  • Webber AC (1996) Biologia floral, polinização e aspectos fenológicos de algumas Annonaceae na Amazônia Central. Dissertation, Manaus: Instituto Nacional de Pesquisas da Amazônia and Fundação Universidade do Amazonas

  • Webber AC, Gottsberger G (1995) Floral biology and pollination of Bocageopsis multiflora and Oxandra euneura in Central Amazonia, with remarks on the evolution of stamens in Annonaceae. Feddes Repert 106:515–524

    Article  Google Scholar 

  • Weiblen GD, Brehm BG (1996) Reproductive strategies and barriers to hybridization between Tellima grandiflora and Tolmeia menziesii (Saxifragaceae). Am J Bot 83:910–918

    Article  Google Scholar 

  • Whigham D (1974) An ecological life history study of Uvularia perfoliata L. Am Midl Nat 91:343–359. https://doi.org/10.2307/2424326

    Article  Google Scholar 

  • Willemstein SC (1987) An evolutionary basis for pollination ecology. E.J. Brill/Leiden University Press, Leiden

    Google Scholar 

  • Williams G, Adams P (2010) The flowering of Australia’s rainforests: a plant and pollination miscellany. CSIRO Publishing, Collingwood

    Book  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton Univeristy Press, New Jersey

    Book  Google Scholar 

  • Willmer PG, Cunnold H, Ballantyne G (2017) Insights from measuring pollen deposition: quantifying the pre-eminence of bees as flower visitors and effective pollinators. Arthropod–Plant Interact 11:411–425. https://doi.org/10.1007/s11829-017-9528-2

    Article  Google Scholar 

  • Willson MF, Hennon PE (1997) The natural history of western skunk cabbage (Lysichiton americanum) in southeast Alaska. Can J Bot 75:1022–1025

    Article  Google Scholar 

  • Woodcock TS, Larson BMH, Kevan PG, Inouye DW, Lunau K (2014) Flies and flowers II: floral attractants and rewards. J Pollinat Ecol 12:63–94

    Google Scholar 

  • Worboys SJ, Jackes BR (2005) Pollination processes in Idiospermum australiense (Calycanthaceae), an arborescent basal angiosperm of Australia’s tropical rain forests. Plant Syst Evol 251:107–117. https://doi.org/10.1007/s00606-004-0226-z

    Article  Google Scholar 

  • Yamamoto S, Ikeda K, Kamitani S (2014) Species diversity and community structure of rove beetles (Coleoptera: Staphylinidae) attracted to dung of sika deer in coniferous forests of southwest Japan. Entomol Sci 17:52–58. https://doi.org/10.1111/ens.12036

    Article  Google Scholar 

  • Young OP (1998) Observations of rove beetle (Coleoptera: Staphylinidae) predation on dung beetles (Scarabaeidae) in Panama. Coleopt Bull 52:217–221

    Google Scholar 

  • Zamora R (1999) Conditional outcomes of interactions: the pollinator-prey conflict of an insectivorous plant. Ecology 80:786–795. https://doi.org/10.2307/177017

    Article  Google Scholar 

  • Zhang X, Zhou HZ (2013) How old are the rove beetles (Insecta: Coleoptera: Staphylinidae) and their lineages? Seeking an answer with DNA. Zool Sci 30:490–501. https://doi.org/10.2108/zsj.30.490

    Article  CAS  PubMed  Google Scholar 

  • Zych M, Goldstein J, Roguz K, Stpiczyńka M (2013) The most effective pollinator revisited: pollen dynamics in a spring-flowering herb. Arthropod–Plant Interact 7:315–322. https://doi.org/10.1007/s11829-013-9246-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Margaret Thayer and the Field Museum of Natural History, Chicago, for the identification of rove beetles found in Australian Araceae, and Margaret’s correspondence and insights into staphylinid–floral interactions. Thanks also to Nicholas Cuff for providing additional pollinator data from Northern Territory Typhonium and Sandy-Lynn Steenhuisen for sharing information on rove beetle visitation to South African Protea. This study was supported by funding from the Holsworth Wildlife Research Endowment and the Australian Postgraduate Award, granted to T.D.J. Sayers, and the Hermon Slade Foundation (HSF09/07) granted to REM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. J. Sayers.

Additional information

Handling Editor: Heikki Hokkanen.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayers, T.D.J., Steinbauer, M.J. & Miller, R.E. Visitor or vector? The extent of rove beetle (Coleoptera: Staphylinidae) pollination and floral interactions. Arthropod-Plant Interactions 13, 685–701 (2019). https://doi.org/10.1007/s11829-019-09698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-019-09698-9

Keywords

Navigation