Arthropod-Plant Interactions

, Volume 12, Issue 2, pp 291–301 | Cite as

Canola quality affects second (Brevicoryne brassicae) and third (Diaeretiella rapae) trophic levels

  • Amene Karami
  • Yaghoub Fathipour
  • Ali Asghar Talebi
  • Gadi V. P. Reddy
Original Paper


Biological control agents can be used as a complementary control measure that can be combined with resistant host plants to control pests. In this study, the effects of different canola cultivars (Karaj-1, Karaj-2, Karaj-3, Licord, Okapi, Opera, RGS003, Sarigol, Talaye and Zarfam) on the performance and life table parameters of the cabbage aphid, Brevicoryne brassicae, and its parasitoid, Diaeretiella rapae, were determined under laboratory conditions. Total fecundity of the cabbage aphid differed with cultivar, with the highest value (59.41 nymphs per female) of this parameter observed on Opera and the lowest (1.67) observed on RGS003. The highest and lowest intrinsic rates of increase (r) of the cabbage aphid were observed on Opera (0.331 day−1) and RGS003 (− 0.242 day−1) cultivars, respectively, suggesting these to be the most susceptible and most resistant cultivars to this pest. However, because the aphid did not settle and feed well on RGS003, it was not possible to determine demographic parameters for its parasitoid. Consequently, the Okapi cultivar, which was the most resistant cultivar to the cabbage aphid after RGS003, was used in this study to assess the parasitoid wasp. The parasitoid’s intrinsic rate of increase (r) varied from 0.426 day−1 on the susceptible cultivar (Opera) to 0.341 day−1 on the resistant canola cultivar Okapi. Aphid performance decreased 93% on the resistant canola cultivar, while parasitoid performance decreased only 20% on the resistant cultivar compared to more susceptible cultivar.


Tritrophic interactions Life table Canola Cabbage aphid Brevicoryne brassicae Diaeretiella rapae 



We would like to thank the Department of Entomology, Tarbiat Modares University, for supporting this research.


  1. Bashir F, Azim MN, Akhter N, Muzaffar G (2013) Effect of texture/morphology of host plants on the biology of Brevicoryne brassicae (L.) (Homoptera: Aphididae). Int J Curr Res 2:178–180Google Scholar
  2. Blackman RL, Eastop VP (2000) Aphids on the world crop pests. Wiley, LondonGoogle Scholar
  3. Butin GD, Raymer PL (1994) Pest status of aphids and other insects in winter canola in Georgia. J Econ Entomol 87:1097–1104CrossRefGoogle Scholar
  4. Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34CrossRefGoogle Scholar
  5. Chi H (2015) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Accessed 5 Oct 2015
  6. Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240Google Scholar
  7. Desneux N, Ramirez-Romero R (2009) Plant characteristics mediated by growing conditions can impact parasitoid’s ability to attack host aphids in winter canola. J Pest Sci 82:335–342CrossRefGoogle Scholar
  8. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New YorkCrossRefGoogle Scholar
  9. Elliot NC, Reed DK, French BW, Kindler SD (1994) Aphid host effects on the biology of Diaeretiella rapae. Southwest Entomol 19:279–283Google Scholar
  10. Ellis PR, Singh R, Pink DAC, Lynn JR, Saw PL (1996) Resistance to Brevicoryne brassicae (L.) in horticultural brassica. Euphitica 88:85–96CrossRefGoogle Scholar
  11. Fathi SAA, Bozorg-Amirkalaee M, Sarfaraz RM (2011) Preference and performance of Plutella xylostella (L.) (Lepidoptera: Plutellidae) on canola cultivars. J Pest Sci 84:41–47CrossRefGoogle Scholar
  12. Fathipour Y, Maleknia B (2016) Mite predators. In: Omkar (ed) Ecofriendly pest management for food security. Elsevier, San Diego, pp 329–366CrossRefGoogle Scholar
  13. Fathipour Y, Mirhosseini MA (2017) Diamondback moth (Plutella xylostella) management. In: Reddy GVP (ed) Integrated management of insect pests on canola and Other Brassica oilseed crops. CABI, Croydon, pp 13–43CrossRefGoogle Scholar
  14. Furk C, Hines CM (1993) Aspects of insecticide resistance in the melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae). Ann Appl Biol 123:9–17CrossRefGoogle Scholar
  15. Goodarzi M, Fathipour Y, Talebi AA (2015) Antibiotic resistance of canola cultivars affecting demography of Spodoptera exigua (Lepidoptera: Noctuidae). J Agric Sci Technol 17:23–33Google Scholar
  16. Huang YB, Chi H (2013) Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. J Appl Entomol 137:327–339CrossRefGoogle Scholar
  17. Jahan F, Abbasipour H, Askarianzadeh AR, Hassanshahi GH, Saeedizadeh AA (2014) Biology and life table parameters of Brevicoryne brassicae (Hemiptera: Aphididae) on cauliflower cultivars. J Insect Sci 14(284):1–6Google Scholar
  18. Jankowska B, Wiech K (2003) Occurrence of Diaeretiella rapae (M’Intosh) (Aphidiidae) in the cabbage aphid (Brevicoryne brassicae L.) colonies on the different crucifere crops. Sodininkystėirdaržininkystė 22:155–163Google Scholar
  19. Kalule T, Wright DJ (2002) Effect of cabbage cultivars with varying levels of resistance to aphids on the performance of the parasitoid, Aphidius colemani (Hymenoptera: Braconidae). Bull Entomol Res 92:53–59PubMedGoogle Scholar
  20. Kalule T, Wright DJ (2004) The influence of cultivar and cultivar-aphid odours on the olfactory response of the parasitoid Aphidius colemani. J Appl Entomol 128:120–125CrossRefGoogle Scholar
  21. Karimi S, Fathipour Y, Talebi AA, Naseri B (2012) Evaluation of canola cultivars for resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) using demographic parameters. J Econ Entomol 105:2172–2179CrossRefPubMedGoogle Scholar
  22. Kelm M, Gadomski H (1995) Occurrence and harmfulness of the cabbage aphid, Brevicoryne brassicae (L.) on winter rape. Mater Ses Inst Ochr Rosl 5:101–103Google Scholar
  23. Khanamani M, Fathipour Y, Hajiqanbar H (2013) Population growth response of Tetranychus urticae to eggplant quality: application of female age-specific and age-stage, two-sex life tables. Int J Acarol 39:638–648CrossRefGoogle Scholar
  24. Khanamani M, Fathipour Y, Hajiqanbar H, Sedaratian A (2014) Two-spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator, Typhlodromus bagdasarjani (Acari: Phytoseiidae). Exp Appl Acarol 63:241–252CrossRefPubMedGoogle Scholar
  25. Maleknia B, Fathipour Y, Soufbaf M (2016) How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of Tetranychus urticae (Acari: Tetranychidae). Int J Acarol 42:70–78CrossRefGoogle Scholar
  26. Maxwell FG, Jennings PR (1931) Breeding plants resistant to insects. Wiley, HobokenGoogle Scholar
  27. Mirmohammadi SH, Allahyari H, Nematolahi MR, Saboori A (2009) Effect of host plant on biology and life table parameters of Brevicoryne brassicae (Hemiptera: Aphididae). Ann Entomol Soc Am 102:450–455CrossRefGoogle Scholar
  28. Nikooei M, Fathipour Y, Javaran MJ, Soufbaf M (2015a) How different genetically manipulated brassica genotypes affect life table parameters of Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 108:515–524CrossRefPubMedGoogle Scholar
  29. Nikooei M, Fathipour Y, Javaran MJ, Soufbaf M (2015b) Influence of genetically manipulated Brassica genotypes on parasitism capacity of Diadegma semiclausum parasitizing Plutella xylostella. J Agric Sci Technol 17:1743–1753Google Scholar
  30. Nikooei M, Fathipour Y, Javaran MJ, Soufbaf M (2017) Genetically manipulated Brassica genotypes affect demography and performance of Diadegma semiclausum parasitizing Plutella xylostella. J Appl Entomol 141:161–171CrossRefGoogle Scholar
  31. Oduor GL, Löhr B, Seif AA (1997) Seasonality of major cabbage pests and incidence of their natural enemies in central Kenya. In: Sivapragasam A, Loke WH, Hussan AK, Lim GS (eds) Proceedings of the 3rd international workshop, management of diamondback moth and other crucifer pests. 29 October–1 November 1996, Kuala LumpurGoogle Scholar
  32. Pike KS, Stary P, Miller T, Allison D, Graf G, Boydston L, Miller R, Gillespie R (1999) Host range and habitats of the aphid parasitoid Diaeretiella rapae (Hymenoptera: Aphididae) in Washington State. Environ Entomol 28:61–71CrossRefGoogle Scholar
  33. Safuraie-Parizi S, Fathipour Y, Talebi AA (2014) Evaluation of tomato cultivars to Helicoverpa armigera using two-sex life table parameters in laboratory. J Asia Pac Entomol 17:837–844CrossRefGoogle Scholar
  34. Saldo S, Szpyrka E (2009) Ecotoxicological view of protection of apple orchards against insect pests in Poland. Pestycydy/Pesticides 1:15–26Google Scholar
  35. Sarfraz M, Dosdall LM, Keddie BA (2008) Host plant genotype of the herbivore Plutella xylostella (Lepidoptera: Plutellidae) affects the performance of its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Biol Control 44:42–51CrossRefGoogle Scholar
  36. Schliephake E, Graichen K, Rabenstein F (2000) Investigation on the vector transmission of the beet mild yellowing virus (BMYV) and the turnip yellows virus (TYV). Z Pflanzenk Pflanzen 107:81–87Google Scholar
  37. Soufbaf M, Fathipour Y, Karimzadeh J, Zalucki MP (2010a) Bottom-up effect of the different host plants on Plutella xylostella (Lepidoptera: Plutellidae): a life-table study on canola. J Econ Entomol 103:2019–2027CrossRefPubMedGoogle Scholar
  38. Soufbaf M, Fathipour Y, Karimzadeh J, Zalucki MP (2010b) Development and age-specific mortality of diamondback moth on brassica host plants. The pattern and causes of mortality under laboratory conditions. Ann Entomol Soc Am 103:574–579CrossRefGoogle Scholar
  39. Soufbaf M, Fathipour Y, Zalucki MP, Hui C (2012) Importance of primary metabolites in canola in mediating interactions between a specialist leaf-feeding insect and its specialist solitary endoparasitoid. Arthropod Plant Interact 6:241–250CrossRefGoogle Scholar
  40. Stern V, Smith R, van den Bosch R, Hagen K (1959) The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia 29:81–101CrossRefGoogle Scholar
  41. Talaee L, Fathipour Y, Talebi AA, Khajehali J (2017) Screening of potential sources of resistance to Spodoptera exigua (Lepidoptera: Noctuidae) in 24 sugar beet genotypes. J Econ Entomol 110:250–258PubMedGoogle Scholar
  42. Tazerouni Z, Talebi AA, Rakhshani E, Zamani AA (2013) Comparison of life table parameters of Russian wheat aphid, Diuraphis noxia, and its parasitoid, Diaeretiella rapae under constant temperatures. Appl Entomol Phytopath 81:1–10Google Scholar
  43. Verkerk RHJ, Neugebauer KR, Ellis PR, Wright DJ (1998) Aphids on cabbage: tritrophic and selective insecticide interactions. Bull Entomol Res 88:343–349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Entomology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
  2. 2.Department of Research Centers, Western Triangle Agricultural Research CenterMontana State UniversityConradUSA

Personalised recommendations