Hintergrund

Traditionell wurden X‑chromosomale Entwicklungsstörungen in zwei Formen eingeteilt: 1) X-chromosomal-rezessive Entwicklungsstörungen mit betroffenen Jungen/Männern und gesunden oder nur leichtgradig betroffenen weiblichen Überträgerinnen. Eine relativ frühzeitige Identifizierung X‑chromosomal-rezessiver Krankheitsgene wurde zum einen durch große Familien, in denen Kopplungsanalysen durchgeführt werden konnten (z. B. [4]), begünstigt. Zudem erlaubte die begrenzte Zahl der X‑chromosomalen Gene auch eine relativ umfassende Sequenzierung nach Sanger [40]. Die derzeitige Zahl von über 100 X‑chromosomalen, mit Entwicklungsstörungen assoziierten Genen dürfte daher relativ vollständig sein (https://sysid.cmbi.umcn.nl [21]). (s. auch Beitrag von Andreas Tzschach). 2) X-chromosomal-dominante Entwicklungsstörungen, die nur bei Mädchen auftreten und für die bei Jungen eine pränatale Letalität postuliert wird. Ein prominentes Beispiel hierfür ist z. B. die Incontinentia pigmenti Bloch-Sulzberger aufgrund von Mutationen im IKBKG-Gen (auch NEMO) (IP, OMIM #308300). Eine Liste von bisher als X‑chromosomal-dominant beschriebenen, mit Entwicklungsstörungen assoziierten Genen ist in Tab. 1 dargestellt.

Tab. 1 Übersicht X‑chromosomal-dominanter Entwicklungsstörungen

In Familien mit X‑chromosomal-rezessiven Entwicklungsstörungen bleiben Überträgerinnen meist symptomlos, da ihr zweites X‑Chromosom oder eine bevorzugte X‑Inaktivierung des mutationstragenden X‑Chromosoms kompensatorisch wirken kann. Dieser Mechanismus funktioniert jedoch nicht immer vollständig, sodass bei zahlreichen X‑chromosomal-rezessiven Entwicklungsstörungen auch immer wieder Mutationsträgerinnen klinische Merkmale zeigen, wenn auch meist deutlich leichtgradiger als die betroffenen Jungen/Männer (s. unten). Eine Liste solcher Gene ist in Tab. 2 angegeben (ohne Anspruch auf Vollständigkeit). Schon vor mehreren Jahren wurde daher diskutiert, die Auftrennung in X‑dominante und X‑rezessive Erkrankungen zu beenden und übergeordnet den Begriff „X-chromosomale Erkrankungen“ zu verwenden [14]. Außerdem wurden vor allem durch die Möglichkeiten der Hochdurchsatz-Sequenzierungsverfahren in den letzten Jahren zunehmend Neumutationen in X‑chromosomalen Genen als Ursache für Entwicklungsstörungen bei Mädchen identifiziert (Tab. 3). Der Phänotyp bei Mädchen überlappt meist mit dem bei Jungen, ist z. T. aber auch anders bzw. sehr distinkt.

Tab. 2 Beispiele X‑chromosomal-rezessiver Entwicklungsstörungen mit gelegentlicher Symptomatik bei Überträgerinnen
Tab. 3 Übersicht X‑chromosomaler Gene: De-novo-Mutationen bei Mädchen, vererbte Mutationen bei Jungen

Die Grenzen zwischen X‑chromosomal-dominant und X‑chromosomal-rezessiv werden daher immer weiter aufgeweicht, und es zeichnet sich für viele X‑chromosomale Gene nun ein immer besser charakterisierbares phänotypisches Spektrum ab, welches beide Geschlechter umfasst.

Genotyp-Phänotyp-Korrelationen und X‑Inaktivierung

Es existieren verschiedene Faktoren, welche die Manifestation X‑chromosomaler Entwicklungsstörungen bei Mädchen/Frauen beeinflussen und welche zur klinischen Variabilität zwischen den Geschlechtern und oft auch innerhalb des weiblichen Geschlechts beitragen:

Unterschiedliche Art, „Schwere“ und Lokalisation von Veränderungen in einem Gen können zu überlappenden, aber auch unterschiedlichen Phänotypen in beiden Geschlechtern führen. Für MECP2 ist z. B. schon länger bekannt, dass De-novo-Mutationen bei Mädchen das Rett-Syndrom (RTT, OMIM #312750) verursachen [2]. Während viele RTT-assoziierte MECP2-Mutationen bei Jungen wohl letal wären, sind MECP2-Duplikationen, die von meist gesunden Müttern an die betroffenen Söhne vererbt wurden, mit einer schweren geistigen Behinderung, progredienten Spastik und Epilepsie im Rahmen des MECP2-Duplikations-Syndroms assoziiert („Lubs X‑linked mental retardation syndrome“, MRXSL, OMIM #300260) [42]. Faktoren wie z. B. ein zusätzliches X‑Chromosom beim Klinefelter-Syndrom oder ein postzygotisches Mosaik können die Manifestation potenziell letaler Mutationen im männlichen Geschlecht ermöglichen. Bei einigen als hauptsächlich X‑chromosomal-dominant bekannten Genen können hypomorphe Mutationen bei Jungen/Männern zu nichtletalen Krankheitsbildern führen, z. B. bei der BCOR-assoziierten syndromalen Mikrophthalmie (MCOPS2, OMIM # 300166) oder den CASK-assoziierten Entwicklungsstörungen (OMIM # 300422, 300749, 300422). Trunkierende Mutationen in BCOR, die nur bei Frauen beobachtet werden, verursachen das okulofaziokardiodentale Syndrom, welches meist mit einer normalen Intelligenz einhergeht. Eine rekurrente, wahrscheinlich hypomorphe Missense-Variante in BCOR ist ursächlich für das Lenz-Mikrophthalmie-Syndrom mit einer kognitiven Störung bei Jungen [29]. Weibliche Patientinnen mit einer „Loss-of-Function-Mutation“ in CASK weisen komplexe Hirnfehlbildungen auf [28], männliche Patienten mit wahrscheinlich hypomorphen Missense-Varianten sind mit einer leichtgradigeren Symptomatik aus variabler geistiger Behinderung mit oder ohne zusätzliche Auffälligkeiten beschrieben [19].

Ein weiterer, wichtiger Faktor ist die X‑Inaktivierung. Diese dient der Angleichung der Gen-Dosis X‑chromosomaler Gene zwischen Frauen und Männern. In der Regel liegt bei Frauen eine annähernd gleiche Verteilung von Zellen mit dem aktiven maternalen und mit dem aktiven paternalen X‑Chromosom vor. Bei Frauen mit einer heterozygoten X‑chromosomalen Aberration kann es zu einer Verschiebung der X‑Inaktivierung zugunsten des Wildtyp-Allels kommen, da diese Zellen einen Wachstumsvorteil haben [26]. Eine solche Verschiebung kann eine klinische Manifestation der assoziierten Erkrankung verhindern oder im Vergleich zu hemizygoten Trägern deutlich abmildern. Die X‑Inaktivierung spielt jedoch nicht nur als kompensatorischer Mechanismus bei gesunden weiblichen Überträgerinnen eine Rolle, sondern kann auch einen Hinweis auf X‑chromosomale Neumutationen bei Mädchen darstellen und evtl. sogar zum Pathomechanismus beitragen. Fieremans et al. konnten z. B. zeigen, dass in einer Kohorte von 288 Mädchen mit sporadischer Entwicklungsstörung die X‑Inaktivierung etwa doppelt so häufig wie in der Normalbevölkerung (7,6 vs. 3,6 %) in DNA aus Blut verschoben war, und dass dies einen Hinweis auf eine X‑chromosomale Ursache, meist durch Neumutationen, darstellen kann [16]. Selten kann eine >90 %ige Inaktivierung des gesunden Allels zu einer fast vollständigen Expression des mutationstragenden Allels und damit zu einer Symptomatik führen. Dies wurde z. B. für einige Mutationen in HUWE1 beobachtet [27]. Andersherum könnte eine >90%ige Inaktivierung des mutationstragenden Allels wirkungslos bleiben, wenn das betroffene Gen zu den 15 % der Gene gehört, die der X‑Inaktivierung entkommen [7]. KDM6A stellt ein Beispiel für ein Gen dar, welches nicht der X‑Inaktivierung unterliegt, und in dem Veränderungen sowohl bei Jungen als auch Mädchen ein Kabuki-Syndrom (KABUK2, OMIM #300867) verursachen können [22]. Auch das Vorliegen eines Mosaiks aus Zellen mit dem aktiven mutationstragenden X‑Chromosom und Zellen mit dem aktiven Wildtyp-X-Chromosom selbst könnte zur klinischen Ausprägung der Erkrankung beitragen, wie es z. B. für das Borjeson-Forssman-Lehmann-Syndrom bei Frauen vermutet wird (s. unten) [47].

In einem besonderen Fall kann auch erst das Vorhandensein eines zweiten, gesunden X‑Chromosoms ausschlaggebend für eine klinische Manifestation sein. Während männliche Träger einer hemizygoten PCDH19-Mutation unauffällig sind, tritt bei weiblichen Trägerinnen einer heterozygoten Mutation eine frühkindliche epileptische Enzephalopathie auf (EIEE9, OMIM #300088; [12]). Auch wenn die zellulären Mechanismen hierfür bisher nur unvollständig verstanden sind, geht man davon aus, dass nicht ein Verlust von PCDH19 an sich, sondern die Koexistenz zweier verschiedener neuronaler Zellpopulationen jeweils mit bzw. ohne funktionales PCDH19 zu einer Störung der Zelladhäsion führt [30]. Die Bedeutung einer solchen Zellinterferenz für die Manifestation der PCDH19-assoziierten Epilepsie wird auch durch Berichte von betroffenen Jungen hervorgehoben, bei denen entweder durch ein somatisches Mosaik oder durch ein Klinefelter-Syndrom zusätzlich ein nicht mutationstragendes X‑Chromosom vorliegt [32, 41].

Im Folgenden stellt dieser Artikel exemplarisch einige X‑chromosomale Gene und Krankheitsbilder bei Mädchen dar, die in den letzten Jahren neu identifiziert und charakterisiert wurden.

NAA10-Defizienz (Ogden-Syndrom, OGDNS, OMIM #300855)

X-chromosomal-rezessive Missense-Mutationen in NAA10 wurden in mehreren Familien mit einem großen Erkrankungsspektrum der betroffenen Jungen beschrieben. Dieses reicht vom früh letalen Ogden-Syndrom mit postnataler Wachstumsstörung, schwerer Entwicklungsstörung, vorgealtertem Erscheinungsbild und kardialen Anomalien (Herzfehler, Arrhythmien) [33] über leichtgradige bis moderate geistige Behinderung mit skelettalen und kardialen Anomalien [8, 38] bis zu einer Form der syndromalen Mikrophthalmie [15]. Weibliche Mutationsträgerinnen in diesen Familien zeigten keine [15, 33] oder eine leichtgradige Symptomatik [8].

Vor kurzem wurden De-novo-Mutationen in NAA10 bei Mädchen mit moderater bis schwerer geistiger Behinderung beschrieben [31, 35, 36]. Viele davon hatten keine aktive Sprache und zeigten außerdem Verhaltensauffälligkeiten wie Stereotypien, autistische Züge, Aufmerksamkeitsdefizite und Aggressivität. Während die Geburtsmaße in der Regel unauffällig waren, traten bei den meisten Mädchen später eine postnatale Wachstumsstörung mit Kleinwuchs und eine Mikrozephalie auf. Weitere häufige Auffälligkeiten waren eine muskuläre Hypotonie, eine Trinkschwäche, skelettale Auffälligkeiten wie Wirbel- oder Brustkorbanomalien, variable faziale Dysmorphien (z. B. Synophrys) und unspezifische MRT-Anomalien. Krampfanfälle wurden bei drei von insgesamt 13 Patientinnen beobachtet [35, 36]. Bei einigen der Mädchen wurden außerdem kleinere Herzfehler und Reizleitungsstörungen (z. B. Long-QT-Syndrom) festgestellt [35]. Letzteres hat natürlich insbesondere eine Konsequenz hinsichtlich entsprechender kardiologischer Überwachung und ggf. medikamentöser Behandlung.

Überlappende klinische Aspekte der NAA10-Defizienz zwischen Mädchen mit De-novo-Mutationen und männlichen Betroffenen mit X‑chromosomal-rezessiven Mutationen beinhalten Entwicklungsstörungen und geistige Behinderung, postnatale Wachstumsstörungen sowie kardiale und skelettale Anomalien.

Zusätzliche spezifischere klinische Phänotypen innerhalb des Erkrankungsspektrums könnten das Resultat spezifischer Effekte der jeweiligen ursächlichen Mutation, z. B. auf die katalytische Aktivität, die strukturelle Integrität oder auf bestimmte andere Funktionen von NAA10, darstellen [35]. NAA10 codiert für die katalytische Untereinheit einer N‑Acetyltransferase, die zur N‑terminalen Acetylierung fast der Hälfte aller menschlichen Proteine beiträgt [3]. Das Mutationsspektrum umfasst eine Spleißmutation in der Familie mit syndromaler Mikrophthalmie und ansonsten verschiedene, z. T. rekurrente Missense-Mutationen, die mit einer Ausnahme nicht zwischen den Geschlechtern überlappen. Aufgrund eines wahrscheinlichen maternalen Keimzellmosaiks trat eine bei einem Mädchen identifizierte NAA10-Variante auch bei ihrem Bruder auf und führte dort zu einem sehr frühen Versterben [35]. Die X‑Inaktivierung wurde bei sechs der Mädchen mit De-novo-Mutationen getestet und reichte von unauffällig bis hin zu komplett verschoben [35].

Genotyp-Phänotyp-Korrelationen und Variabilität innerhalb und zwischen den Geschlechtern sind wahrscheinlich durch eine Kombination verschiedener Faktoren wie Lokalisation und Art der Mutation, Grad der Beeinträchtigung der enzymatischen Stabilität und Aktivität sowie durch den Grad der X‑Inaktivierung bei Frauen beeinflusst [35].

Börjeson-Forssman-Lehmann Syndrom (BFLS, OMIM #301900)

Mutationen in PHF6 wurden 2002 als Ursache für das 1962 erstmals klinisch beschriebene, X‑chromosomal-rezessive Börjeson-Forssman-Lehmann-Syndrom identifiziert [5, 24]. Als Hauptmerkmale bei den betreffenden Jungen/Männern wurden eine mittlere bis schwere geistige Behinderung, eine Epilepsie, ein Hypogonadismus, Adipositas und Kleinwuchs sowie faziale Besonderheiten mit großen Ohren, engen Lidspalten und einer prominenten Jochbeinregion angegeben [24]. Weibliche Anlageträgerinnen in diesen Familien hatten keine oder leichtgradige klinische Merkmale, die X‑Inaktivierung war bei einigen verschoben, bei anderen unauffällig [9, 24].

Vor wenigen Jahren wurden De-novo-Mutationen in PHF6 bei Mädchen mit einem sehr charakteristischen Erscheinungsbild identifiziert [47]. Dieses beinhaltete neben einer variablen geistigen Behinderung sehr distinkte Gesichtszüge mit einer schmalen Stirn, einer prominenten supraorbitalen Region, einer kurzen Nase und länglich geformten Ohren (Abb. 1a). Darüber hinaus traten eine Amenorrhö/Oligomenorrhö, Finger- und Zehendeformitäten (hypoplastische Endglieder, ausgeprägte Klinodaktylie IV) (Abb. 1b), kleine und unregelmäßig geformte, vorzeitig ausfallende Zähne sowie eine streifige Pigmentierung der Haut auf (Abb. 1c; [47]). Im Kleinkindesalter kann das BFLS bei Mädchen aufgrund hypoplastischer Fingerendglieder und spärlichen Haarwuchses eine Differenzialdiagnose zum Coffin-Siris-Syndrom darstellen [45]. Die X‑Inaktivierung im Blut war bei allen getesteten Patientinnen mit De-novo-Mutation im Blut verschoben und in Fibroblasten unauffällig [47].

Abb. 1
figure 1

Charakteristisches klinisches Erscheinungsbild von Patientinnen mit De-novo-Mutationen in PHF6. a Faziale Besonderheiten bei sechs verschiedenen Patientinnen, fünf davon in verschiedenen Altersstufen. b Finger- und Zehenanomalien mit u. a. spitz zulaufenden Fingern, Klinodaktylien der vierten und fünften Finger und ausgeprägter Brachydaktylie der Zehen. c Zahnanomalien mit kleinen, stiftförmigen Zähnen mit weitem Abstand und streifige Hautpigmentierung. (Abbildung reproduziert und modifiziert aus Zweier et al. [47] mit Erlaubnis der BMJ Publishing Group Ltd. Dieser Inhalt ist nicht Teil der Open-Access-Lizenz)

Überlappende phänotypische Merkmale zwischen männlichen und weiblichen Patienten mit einem BFLS sind eine variable geistige Behinderung, kurze Zehen, spitz zulaufende Finger, ein Hypogonadismus sowie längliche Ohren und eine prominente Jochbeinregion. Insgesamt wirkt die Fazies bei den Patientinnen mit De-novo-Mutationen jedoch deutlich distinkter. Weitere spezifische Anomalien, die nur bei Mädchen/Frauen mit De-novo-Mutationen in PHF6 beschrieben sind, beinhalten Zahnanomalien, z. T. stark ausgeprägte Fingerdeformitäten sowie eine streifige Hautpigmentierung [47].

PHF6 codiert für ein Zinkfingerprotein, das im Zellkern lokalisiert ist und dem daher eine Rolle in der transkriptionellen Regulation zugeschrieben wird [25, 46]. Über eine Interaktion mit dem PAF1-Transkriptions-Elongations-Komplex könnte PHF6 eine Rolle bei der neuronalen Migration spielen [46]. Das Mutationsspektrum umfasst Missense-Varianten, trunkierende Mutationen sowie intragenische Deletionen und Duplikationen. Während bei Männern eher Missense-Varianten überwiegen, sind bei den Frauen trunkierende Veränderungen häufiger. Eine Ursache für den stark ausgeprägten Phänotyp bei Frauen mit De-novo-Mutationen im Vergleich zu unauffälligen oder nur leichtgradig symptomatischen Überträgerinnen in den X‑chromosomal-rezessiven Familien könnte daher u. a. die Art und damit „Schwere“ der Mutation sein. Eine Erklärung für Merkmale, die nur bei weiblichen und nicht bei männlichen Patienten auftreten, könnte auch ein funktionelles Mosaik durch die X‑Inaktivierung sein, bei dem in einem Teil der Körperzellen das Allel mit der Mutation und im anderen Teil der Körperzellen das Wildtyp-Allel aktiv ist. Die streifenförmige Pigmentierung der Patientinnen mit De-novo-Mutationen und die in Fibroblasten nicht verschobene X‑Inaktivierung deuten auf ein solches Mosaik hin [47].

KIAA2022-assoziierte Entwicklungsstörung (MRX98, OMIM #300912)

Chromosomale Aberrationen oder trunkierende Mutationen in KIAA2022 wurden in mehreren X‑chromosomal-rezessiven Familien beschrieben. Die betroffenen Jungen hatten eine schwere Entwicklungsstörung mit fehlender oder sehr eingeschränkter Sprache, häufig Verhaltensauffälligkeiten und unspezifische faziale Dysmorphien. Bei etwa der Hälfte wurden ein Kleinwuchs, eine Mikrozephalie und Krampfanfälle beschrieben [6, 23, 43]. Weibliche Mutationsträgerinnen in diesen Familien waren klinisch unauffällig oder leichtgradig betroffen [6, 23, 43].

Vor Kurzem wurden trunkierende Neumutationen in KIAA2022 bei Mädchen mit leichter bis schwerer geistiger Behinderung beschrieben [10, 44]. Bei etwa 80 % trat eine z. T. therapierefraktäre Epilepsie auf. Verhaltensauffälligkeiten wie z. B. autistische Züge waren ebenfalls häufig. Unspezifische faziale Dysmorphien, eine Mikrozephalie oder ein Kleinwuchs fielen nur bei wenigen oder einzelnen der Mädchen auf. Die X‑Inaktivierung im Blut war bei 8 von 10 getesteten Mädchen unauffällig und 2‑mal verschoben [10].

Die kognitive Einschränkung scheint bei Mädchen insgesamt etwas variabler und leichtgradiger als bei Jungen zu sein. Bei Mädchen wurde zudem häufiger eine Epilepsie beschrieben, bei Jungen häufiger eine Mikrozephalie, ein Kleinwuchs und faziale Dysmorphien. Zwei Mädchen mit 100 % verschobener X‑Inaktivierung zeigten einen den Jungen ähnlichen Phänotyp [10].

Das Mutationsspektrum mit „Loss-of-Function-Mutationen“ war in beiden Geschlechtern ähnlich [10]. KIAA2022 wird stark im fetalen sowie im adulten Gehirn exprimiert und ist am Wachstum von Neuriten beteiligt, indem es die Steuerung der Zell-Zell-Adhäsion über den N‑Cadherin-Signalweg beeinflusst [18]. Als mögliche Gründe für die phänotypischen Unterschiede zwischen Mädchen und Jungen sowie für die klinische Variabilität innerhalb des Geschlechts werden eine unterschiedlich starke Expressionsverminderung durch die verschiedenen Mutationen, der Grad der X‑Inaktivierung sowie ein mögliches, durch die X‑Inaktivierung bedingtes, funktionelles Mosaik im Gehirn diskutiert [10].

DDX3X-assoziierte Entwicklungsstörung (MRX102, OMIM #300958)

Erst vor Kurzem wurden De-novo-Mutationen in DDX3X als eine der häufigsten Ursachen für Entwicklungsstörungen identifiziert [11]. Eine große Studie mit 38 Patientinnen ergab ein sehr variables Krankheitsbild [37]. Die Betroffenen hatten eine leichtgradige bis schwere geistige Behinderung, eine muskuläre Hypotonie, Bewegungsstörungen, Verhaltensauffälligkeiten und etwas seltener eine Mikrozephalie, Kleinwuchs oder Epilepsie. Darüber hinaus wurden bei einigen der Mädchen eine mosaikartige Pigmentierung der Haut, Lippen‑/Kiefer‑/Gaumenspalten, Hör- und Sehstörungen, vorzeitige Pubertät und Magnetresonanztomographie(MRT)-Anomalien (z. B. Balkenhypoplasie, kortikale Malformationen, weite Ventrikel) beschrieben. Faziale Dysmorphien waren häufig, ergaben aber kein spezifisches, wiedererkennbares Bild [37]. De-novo-DDX3X-Mutationen wurden auch bei zwei Mädchen mit der vorherigen klinischen Verdachtsdiagnose eines Toriello-Carey-Syndroms aufgrund einer Wachstumsstörung, eines hypoplastischen Balkens, eines Herzfehlers und fazialer Dysmorphien beschrieben [13]. Die X‑Inaktivierung war bei 7 von 15 getesteten Mädchen verschoben, ohne dass dies mit der Schwere der Entwicklungsstörung korrelierte [37].

X-chromosomal-rezessiv vererbte Missense-Mutationen in DDX3X wurden bei betroffenen Jungen und gesunden Müttern in vier Familien gefunden [20, 37]. Die Betroffenen hatten eine leichtgradige bis schwere geistige Behinderung und z. T. ein komplexeres Bild mit Herzfehlern und muskulärer Hypertonie bzw. progredienter Spastik. Die X‑Inaktivierung war bei Frauen in einer Familie verschoben, in einer zweiten unauffällig [37].

Überlappende phänotypische Merkmale zwischen Mädchen mit De-novo-Mutationen in DDX3X und Jungen mit maternal vererbten Varianten sind vor allem eine variable geistige Behinderung mit möglichen zusätzlichen Anomalien, die jedoch ein eher unspezifisches Bild ergeben [37].

DDX3X codiert für eine konservierte DEAD-Box-RNA-Helikase, spielt eine wichtige Rolle bei der Regulation von Transkription, Spleißen und Translation und ist ein Schlüsselregulator des Wnt-Signalwegs [1]. Die De-novo-Mutationen bei Mädchen beinhalteten entweder trunkierende Mutationen oder Missense-Varianten in den Helikase-Domänen. Bei den Mutationen in den X‑chromosomal-rezessiven Familien handelte es sich um Missense-Varianten in einer der Helikase-Domänen [37]. Es wird insgesamt ein „Loss-of-Function-Mechanismus“ postuliert [37].

Zur Ausprägung und Variabilität der Entwicklungsstörungen bei Mädchen und Jungen könnten verschiedene Faktoren beitragen. Versuche mit Überexpression des humanen DDX3X-Transkripts (Wildtyp und Mutanten) im Zebrafisch zeigten, dass die bei Frauen identifizierten Mutationen zu einem kompletten Verlust von DDX3X führen. Überexpression von DDX3X mit im männlichen Geschlecht identifizierten Varianten zeigte zumindest in diesem Assay keinen Unterschied zum Wildtyp, sodass es sich um hypomorphe Veränderungen handeln könnte [37]. Da DDX3X der X‑Inaktivierung entkommt, könnten dosisabhängige Effekte der DDX3X-Expression eine Rolle spielen [37].

Fazit

Die Bedeutung von Veränderungen in X‑chromosomalen Genen für Entwicklungsstörungen bei Mädchen hat in den letzten Jahren zugenommen. Im Rahmen der Diagnostik, aber auch der Forschung sollten daher bei Mädchen/Frauen auch Mutationen in X‑chromosomalen Genen als potenziell ursächlich bedacht werden. Als Konsequenz sollte auch auf die Aufteilung in X‑chromosomal-dominant und X‑chromosomal-rezessiv verzichtet werden und als übergeordnete Bezeichnung z. B. der Begriff „X-chromosomale Entwicklungsstörung“ verwendet werden. Für die Manifestation im weiblichen Geschlecht sind verschiedene Faktoren verantwortlich. Der X‑Inaktivierung kommt eine besonders bedeutende Rolle zu, die bisher aber erst sehr unvollständig verstanden ist. Die Identifizierung und Beschreibung von X‑chromosomalen Entwicklungsstörungen bei Mädchen/Frauen sowie die funktionelle Charakterisierung von Genotyp-Phänotyp-Korrelationen und hinsichtlich der X‑Inaktivierung lassen in den nächsten Jahren weitere neue Erkenntnisse erwarten.