, Volume 21, Issue 3, pp 187–192 | Cite as

Inter- and intraindividual variability of the pupillary unrest index

  • Torsten Eggert
  • Cornelia Sauter
  • Hans Dorn
  • Anita Peter
  • Marie-Luise Hansen
  • Heidi Danker-Hopfe
Original Article



The recording of slow pupillary oscillations in complete darkness is a promising approach for objective evaluation of daytime sleepiness at the physiological level. The aim of the present study was to analyze the magnitude of between- and within-subject variation of the pupillary unrest index (PUI) in a sample of healthy individuals.

Materials and methods

The present data were collected within the framework of a mobile phone study on possible effects of radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Pupillary behavior was monitored in 30 young healthy male volunteers (age 18–30 years) on ten non-consecutive experimental days at 11:00 a.m. and 04:00 p.m., using infrared video pupillography (compact integrated pupillograph, CIP). Since RF-EMF had no impact on the PUI, data were pooled for the present analysis.


Mixed-model analyses of variance (ANOVAs) showed that the PUI was subject to higher interindividual variation as compared to intraindividual variation at both times of measurement. This resulted in intraclass correlation coefficients pointing to a substantial stability of these interindividual differences. A comparison of the PUI results with currently used cutoff values revealed that more than 50% of recordings from young, healthy, non-sleep-disturbed males showed values beyond the “normal” range.


The significant interindividual variability implies that the PUI is not only a state marker. Evaluations of such measurements should therefore consider the PUI as a possible trait marker to ensure comparability and correct interpretation.


Pupillography Trait marker Daytime sleepiness Alertness Vigilance 

Inter- und intraindividuelle Variabilität des Pupillenunruheindex



Die Registrierung von langsamen Pupillenbewegungen in kompletter Dunkelheit ist ein vielversprechendes Verfahren zur objektiven Bewertung von Tagesschläfrigkeit auf der physiologischen Ebene. Ziel der vorliegenden Untersuchung war die Analyse von inter- und intraindividueller Variabilität des Pupillenunruheindex (PUI) anhand einer Gruppe gesunder Personen.


Die Daten wurden im Rahmen einer Mobilfunkstudie erhoben, in der ein möglicher Einfluss von elektromagnetischen Feldern auf das zentrale Nervensystem untersucht wurde. An 30 gesunden jungen Männern im Alter von 18 bis 30 Jahren wurde das Pupillenverhalten an zehn nicht aufeinander folgenden Terminen jeweils am Vormittag (11:00 Uhr) und am Nachmittag (16:00 Uhr) mittels der Infrarot-Video-Pupillographie (Compact Integrated Pupillograph, CIP) aufgezeichnet. Da in dieser Studie kein Expositionseffekt durch elektromagnetische Felder auf den PUI beobachtet werden konnte, wurden die Daten für die vorliegende Untersuchung zusammengefasst.


Die Mixed-Model-Varianzanalysen ergaben, dass dem PUI sowohl am Vor- als auch am Nachmittag eine höhere interindividuelle Variabilität im Vergleich zur intraindividuellen Variabilität zugrunde lag. Daraus konnten Intraklassen-Korrelationskoeffizienten berechnet werden, die auf eine beträchtliche Stabilität dieser interindividuellen Unterschiede hindeuteten. Bei Orientierung an den aktuell gültigen Grenzwerten sind die Ergebnisse von gesunden, nicht schlafgestörten jungen Erwachsenen in mehr als 50 % der Fälle als nicht „normal“ einzustufen.


Die signifikante interindividuelle Variabilität spricht dafür, dass der PUI nicht nur ein State-Merkmal darstellt. Bei Bewertungen dieser Ergebnisse sollte daher der PUI als mögliches Trait-Merkmal mit berücksichtigt werden, um eine Vergleichbarkeit und korrekte Interpretation sicherzustellen.


Pupillographie Trait-Merkmal Tagesschläfrigkeit Wachheit Vigilanz 


Compliance with ethical guidelines

Conflict of interest

T. Eggert, C. Sauter, H. Dorn, A. Peter, M.-L. Hansen and H. Danker-Hopfe declare that they have no competing interests.

This human study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics committee of the Charite – University Medicine, Berlin. Each participant gave his written informed consent and was compensated for contribution.


  1. 1.
    Arand D, Bonnet M, Hurwitz T et al (2005) The clinical use of the MSLT and MWT. Sleep 28:123–144CrossRefPubMedGoogle Scholar
  2. 2.
    Bremner FD (2012) Pupillometric evaluation of the dynamics of the pupillary response to a brief light stimulus in healthy subjects. Invest Ophthalmol Vis Sci 53:7343–7347CrossRefPubMedGoogle Scholar
  3. 3.
    Buysse DJ, Reynolds CF, Monk TH et al (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213CrossRefPubMedGoogle Scholar
  4. 4.
    Cluydts R, De Valck E, Verstraeten E et al (2002) Daytime sleepiness and its evaluation. Sleep Med Rev 6:83–96CrossRefPubMedGoogle Scholar
  5. 5.
    Danker-Hopfe H, Kraemer S, Dorn H et al (2001) Time-of-day variations in different measures of sleepiness (MSLT, pupillography, and SSS) and their interrelations. Psychophysiology 38:828–835CrossRefPubMedGoogle Scholar
  6. 6.
    Danker-Hopfe H, Dorn H, Bahr A et al (2011) Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep. J Sleep Res 20:73–81CrossRefPubMedGoogle Scholar
  7. 7.
    Eggert T, Sauter C, Popp R et al (2012) The Pupillographic SleepinessTest in adults: effect of age, gender, and time of day on pupillometric variables. Am J Hum Biol 24:820–828CrossRefPubMedGoogle Scholar
  8. 8.
    Eggert T, Sauter C, Dorn H et al (2015) Individual stability of sleep spindle characteristics in healthy young males. Somnol Schlafforsch Schlafmed 19:38–45CrossRefGoogle Scholar
  9. 9.
    Geisler P, Tracik F, Cronlein T et al (2006) The influence of age and sex on sleep latency in the MSLT-30 – a normative study. Sleep 29:687–692CrossRefPubMedGoogle Scholar
  10. 10.
    Hirshkowitz H, Sharafkhaneh A (2017) Evaluating sleepiness. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier Saunders, St. Louis, pp 1651–1658CrossRefGoogle Scholar
  11. 11.
    Horne JA, Östberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110PubMedGoogle Scholar
  12. 12.
    Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545CrossRefPubMedGoogle Scholar
  13. 13.
    Kraemer S, Danker-Hopfe H, Dorn H et al (2000) Time-of-day variations of indicators of attention: performance, physiologic parameters, and self-assessment of sleepiness. Biol Psychiatry 48:1069–1080CrossRefPubMedGoogle Scholar
  14. 14.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  15. 15.
    Lowenstein O, Feinberg R, Loewenfeld IE (1963) Pupillary movements during acute and chronic fatigue. Invest Ophthalmol 2:138–157Google Scholar
  16. 16.
    Lüdtke H, Wilhelm B, Adler M et al (1998) Mathematical procedures in data recording and processing of pupillary fatigue waves. Vision Res 38:2889–2896CrossRefPubMedGoogle Scholar
  17. 17.
    Melamed S, Oksenberg A (2002) Excessive daytime sleepiness and risk of occupational injuries in non-shift daytime workers. Sleep 25:315–322CrossRefPubMedGoogle Scholar
  18. 18.
    Merritt SL, Schnyders HC, Patel M et al (2004) Pupil staging and EEG measurement of sleepiness. Int J Psychophysiol 52:97–112CrossRefPubMedGoogle Scholar
  19. 19.
    Peters T, Gruner C, Durst W et al (2014) Sleepiness in professional truck drivers measured with an objective alertness test during routine traffic controls. Int Arch Occup Environ Health 87:881–888CrossRefPubMedGoogle Scholar
  20. 20.
    Regen F, Dorn H, Danker-Hopfe H (2013) Association between pupillary unrest index and waking electroencephalogram activity in sleep-deprived healthy adults. Sleep Med 14:902–912CrossRefPubMedGoogle Scholar
  21. 21.
    Sauter C, Dorn H, Bahr A et al (2011) Effects of exposure to electromagnetic fields emitted by GSM 900 and WCDMA mobile phones on cognitive function in young male subjects. Bioelectromagnetics 32:179–190CrossRefPubMedGoogle Scholar
  22. 22.
    Shahid A, Shen J, Shapiro CM (2010) Measurements of sleepiness and fatigue. J Psychosom Res 69:81–89CrossRefPubMedGoogle Scholar
  23. 23.
    Tregear S, Reston J, Schoelles K et al (2010) Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. Sleep 33:1373–1380CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tryon WW (1975) Pupillometry: a survey of sources of variation. Psychophysiology 12:90–93CrossRefPubMedGoogle Scholar
  25. 25.
    Tucker AM, Dinges DF, Van Dongen HP (2007) Trait interindividual differences in the sleep physiology of healthy young adults. J Sleep Res 16:170–180CrossRefPubMedGoogle Scholar
  26. 26.
    Urschitz MS, Heine K, Brockmann PE et al (2013) Subjective and objective daytime sleepiness in schoolchildren and adolescents: results of a community-based study. Sleep Med 14:1005–1012CrossRefPubMedGoogle Scholar
  27. 27.
    Walzl M, Hagen R, Prummer K (2007) Pupillometrische Untersuchungen auf Schläfrigkeit bei Berufskraftfahrern. Zentralbl Arbeitsmed 57:349–364 (German)CrossRefGoogle Scholar
  28. 28.
    Weil De Vega C, Durst W, Otto G et al (2005) Sleepy on the highway – a roadside study. Sleep Med 6(Suppl 2):193Google Scholar
  29. 29.
    Wilhelm B, Bittner E, Hofmann A et al (2015) Short-term reproducibility and variability of the pupillographic sleepiness test. Am J Hum Biol 27:862–866CrossRefPubMedGoogle Scholar
  30. 30.
    Wilhelm B, Wilhelm H, Lüdtke H et al (1998) Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep 21:258–265PubMedGoogle Scholar
  31. 31.
    Wilhelm B, Giedke H, Lüdtke H et al (2001) Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. J Sleep Res 10:1–7CrossRefPubMedGoogle Scholar
  32. 32.
    Wilhelm B, Körner A, Heldmaier K et al (2001) Normwerte des pupillographischen Schläfrigkeitstests für Frauen und Männer zwischen 20 und 60 Jahren. Somnologie 5:115–120 (German)CrossRefGoogle Scholar
  33. 33.
    Wilhelm H, Wilhelm B (2003) Clinical applications of pupillography. J Neuroophthalmol 23:42–49CrossRefPubMedGoogle Scholar
  34. 34.
    Wilhelm H, Lüdtke H, Wilhelm B (1998) Pupillographic sleepiness testing in hypersomniacs and normals. Albrecht Von Graefes Arch Klin Exp Ophthalmol 236:725–729CrossRefGoogle Scholar
  35. 35.
    Zung WW (1965) A self-rating depression scale. Arch Gen Psychiatry 12(1):63–70CrossRefPubMedGoogle Scholar
  36. 36.
    Zung WW (1971) A rating instrument for anxiety disorders. Psychosomatics 12:371–379CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • Torsten Eggert
    • 1
  • Cornelia Sauter
    • 1
  • Hans Dorn
    • 1
  • Anita Peter
    • 1
  • Marie-Luise Hansen
    • 1
  • Heidi Danker-Hopfe
    • 1
  1. 1.Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthCompetence Centre of Sleep MedicineBerlinGermany

Personalised recommendations