Somnologie

pp 1–8 | Cite as

Automatic positive airway pressure for treatment of obstructive sleep apnea in heart failure

Design, rationale, and insights from the APAP randomized controlled trial
  • Olaf Oldenburg
  • Henrik Fox
  • Birgit Wellmann
  • Ulrich Thiem
  • Dieter Horstkotte
  • Thomas Bitter
Original Article

Abstract

Background

Moderate-to-severe obstructive sleep apnea (OSA) has been documented in about 20% of patients with heart failure and reduced ejection fraction (HF-REF). Continuous positive airway pressure (CPAP) is the gold standard for OSA treatment, but very few studies have investigated the effects of CPAP on quality of life, cardiac function, and outcome in HF-REF patients. The Automatic Positive Airway Pressure (APAP) trial is investigating the effects of automatically-adjusting CPAP on cardiopulmonary exercise capacity, OSA parameters, HF status, and quality of life in HF-REF patients with moderate-to-severe OSA.

Methods

This prospective, single-center trial (DRKS00000446) randomized HF-REF patients (NYHA ≥ II, ejection fraction ≤45%) with moderate-to-severe OSA (apnea–hypopnea index ≥15/h) to 6 months of treatment with APAP (AutoSet™, ResMed) or nasal strips (control). The primary endpoint is change in cardiopulmonary exercise (CPX) capacity parameters in HF-REF patients treated with nasal strips (control group) or APAP from baseline to 6 months. These parameters include peak oxygen uptake (VO2 peak), predicted peak oxygen uptake (predicted VO2 peak), and oxygen uptake at the individual aerobic–anaerobic threshold (VO2-AT) during a standardized testing protocol. Secondary endpoints include changes in sleep apnea parameters, quality of life, sleepiness, laboratory (including natriuretic peptides) and echocardiographic (ejection fraction, dimensions) measurements, and 6‑min walk distance.

Conclusion

The APAP trial was designed to assess the efficacy of APAP therapy for OSA on cardiopulmonary exercise capacity in HF-REF patients after 6 months. Secondary endpoints will reveal its effects on quality of life, sleepiness, and metrics of cardiac morphology and function.

Keywords

Obstructive sleep apnea CPAP ventilation Cardiac failure Cardiopulmonary exercise capacity Quality of life 

Automatische positive Überdruckbeatmung zur Behandlung der obstruktiven Schlafapnoe bei Herzinsuffizienz

Design, Rationale und Einblicke in die randomisierte kontrollierte APAP-Studie

Zusammenfassung

Hintergrund

Bei herzinsuffizienten Patienten mit reduzierter linksventrikulärer Ejektionsfraktion (HF-REF) findet sich in etwa 20 % der Fälle eine mittelschwere bis schwere obstruktive schlafbezogene Atmungsstörung (OSA). Die kontinuierliche Überdruckbeatmungstherapie („continuous positive airway pressure“, CPAP) gilt als Goldstandard in der OSA-Therapie, aber nur in wenigen Studien wurden bislang die Effekte einer CPAP-Therapie bei HF-REF-Patienten auf Lebensqualität, kardiale Funktion und Mortalität untersucht. Die Automatic-Positive-Airway-Pressure(APAP)-Studie untersucht die Effekte einer automatischen CPAP-Therapie auf die kardiopulmonale Leistungsfähigkeit, Kenngrößen der OSA, den Herzinsuffizienzstatus und die Lebensqualität bei HF-REF-Patienten mit mittelschwerer und schwerer OSA.

Methoden

Es handelt sich um eine prospektive, randomisierte Einzelzentrumsstudie (DRKS00000446) an chronisch-stabilen HF-REF-Patienten (NYHA ≥ II, linksventrikuläre Ejektionsfraktion ≤45 %) mit mittelschwerer bis schwerer OSA (Apnoe-Hypopnoe-Index ≥15/h), die 6 Monate entweder mit APAP (AutoSet™, Fa. ResMed) oder Nasenpflaster (Kontrollgruppe) behandelt wurden. Änderungen in der kardiopulmonalen Leistungsfähigkeit vom Ausgangswert zum Wert nach 6 Monaten bei Nasenpflaster- sowie APAP-therapierten Patienten stellen den primären Endpunkt der Studie dar. Als primäre Endpunktparameter dienen dabei der Spitzenwert der Sauerstoffaufnahme („VO2 peak“), der alters-, gewichts- und geschlechtsadaptierte Spitzenwert der Sauerstoffaufnahme („predicted VO2 peak“) sowie der Wert der Sauerstoffaufnahme an der individuellen aerob-anaeroben Schwelle (VO2-AT). Als sekundäre Endpunkte dienen Änderungen von Parametern der Schlafapnoe, der Lebensqualität, der Tagesschläfrigkeit, der Gehstrecke im standardisierten 6‑min-Gehtest sowie laborchemische (inkl. natriuretische Peptide) und echokardiographische Endpunkte (inkl. LV-EF, Dimensionen).

Schlussfolgerungen

Die randomisierte kontrollierte APAP-Studie untersucht die Effektivität einer 6‑monatigen automatischen CPAP-Therapie zur Behandlung einer mittelschweren und schweren OSA auf die kardiopulmonale Leistungsfähigkeit bei HF-REF-Patienten. Sekundäre Endpunkte sind Änderungen der Lebensqualität, der Tagesschläfrigkeit sowie der kardialen Funktion und Morphologie.

Schlüsselwörter

Obstruktive Schlafapnoe CPAP-Beatmung Herzinsuffizienz Kardiopulmonale Leistungsfähigkeit Lebensqualität 

References

  1. 1.
    Oldenburg O, Lamp B, Faber L et al (2007) Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257CrossRefPubMedGoogle Scholar
  2. 2.
    Schulz R, Blau A, Borgel J et al (2007) Sleep apnoea in heart failure. Eur Respir J 29:1201–1205CrossRefPubMedGoogle Scholar
  3. 3.
    Gottlieb DJ, Yenokyan G, Newman AB et al (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 122:352–360CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang H, Parker JD, Newton GE et al (2007) Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol 49:1625–1631CrossRefPubMedGoogle Scholar
  5. 5.
    Chowdhury M, Adams S, Whellan DJ (2010) Sleep-disordered breathing and heart failure: focus on obstructive sleep apnea and treatment with continuous positive airway pressure. J Card Fail 16:164–174CrossRefPubMedGoogle Scholar
  6. 6.
    Kasai T, Yumino D, Redolfi S et al (2015) Overnight effects of obstructive sleep apnea and its treatment on stroke volume in patients with heart failure. Can J Cardiol 31:832–838CrossRefPubMedGoogle Scholar
  7. 7.
    Korcarz CE, Benca R, Barnet JH et al (2016) Treatment of obstructive sleep apnea in young and middle-aged adults: effects of positive airway pressure and compliance on arterial stiffness, endothelial function, and cardiac hemodynamics. J Am Heart Assoc 5:e002930PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pearse SG, Cowie MR (2016) Sleep-disordered breathing in heart failure. Eur J Heart Fail 18:353–361CrossRefPubMedGoogle Scholar
  9. 9.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200CrossRefPubMedGoogle Scholar
  10. 10.
    Oldenburg O, Arzt M, Bitter T et al (2015) Positionspapier “Schlafmedizin in der Kardiologie”. Kardiologie 9:140–158CrossRefGoogle Scholar
  11. 11.
    Mayer G, Arzt M, Braumann B et al (2017) S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen – Kapitel “Schlafbezogene Atmungsstörungen”. Deutsche Gesellschaft für Schlafforschung und Schlafmedizin (DGSM). Somnologie 20(Suppl 2):S97–S180Google Scholar
  12. 12.
    Pevernagie DA, Shepard JW Jr. (1992) Relations between sleep stage, posture and effective nasal CPAP levels in OSA. Sleep 15:162–167CrossRefPubMedGoogle Scholar
  13. 13.
    Pevernagie DA, Stanson AW, Sheedy PF 2nd et al (1995) Effects of body position on the upper airway of patients with obstructive sleep apnea. Am J Respir Crit Care Med 152:179–185CrossRefPubMedGoogle Scholar
  14. 14.
    White LH, Lyons OD, Yadollahi A et al (2015) Night-to-night variability in obstructive sleep apnea severity: relationship to overnight rostral fluid shift. J Clin Sleep Med 11:149–156PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hukins C (2004) Comparative study of autotitrating and fixed-pressure CPAP in the home: a randomized, single-blind crossover trial. Sleep 27:1512–1517CrossRefPubMedGoogle Scholar
  16. 16.
    To KW, Chan WC, Choo KL et al (2008) A randomized cross-over study of auto-continuous positive airway pressure versus fixed-continuous positive airway pressure in patients with obstructive sleep apnoea. Respirology 13:79–86PubMedGoogle Scholar
  17. 17.
    Vennelle M, White S, Riha RL et al (2010) Randomized controlled trial of variable-pressure versus fixed-pressure continuous positive airway pressure (CPAP) treatment for patients with obstructive sleep apnea/hypopnea syndrome (OSAHS). Sleep 33:267–271CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Spießhöfer J, Fox H, Lehmann R et al (2016) Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne-Stokes respiration compared to healthy volunteers. Heart Vessels 31:1117–1130CrossRefPubMedGoogle Scholar
  19. 19.
    Hudgel DW, Fung C (2000) A long-term randomized, cross-over comparison of auto-titrating and standard nasal continuous airway pressure. Sleep 23:645–648CrossRefPubMedGoogle Scholar
  20. 20.
    Ficker JH, Wiest GH, Lehnert G et al (1998) Evaluation of an auto-CPAP device for treatment of obstructive sleep apnoea. Thorax 53:643–648CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the diagnosis and treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847CrossRefPubMedGoogle Scholar
  22. 22.
    Oldenburg O, Bitter T, Lehmann R et al (2011) Adaptive servoventilation improves cardiac function and respiratory stability. Clin Res Cardiol 100:107–115CrossRefPubMedGoogle Scholar
  23. 23.
    Podszus T, Seevers H, Mayer G et al (2009) Positionspapier “Schlafmedizin in der Kardiologie”. Kardiologie 3:9–15CrossRefGoogle Scholar
  24. 24.
    Peltonen LI, Vento SI, Simola M et al (2004) Effects of the nasal strip and dilator on nasal breathing – a study with healthy subjects. Rhinology 42:122–125PubMedGoogle Scholar
  25. 25.
    Wenzel M, Schonhofer B, Siemon K et al (1997) Nasal strips without effect on obstructive sleep apnea and snoring. Pneumologie 51:1108–1110PubMedGoogle Scholar
  26. 26.
    Yagihara F, Lorenzi-Filho G, Santos-Silva R (2017) Nasal dilator strip is an effective placebo intervention for severe obstructive sleep apnea. J Clin Sleep Med 13:215–221CrossRefPubMedGoogle Scholar
  27. 27.
    Schonhofer B, Wenzel M, Barchfeld T et al (1997) Wertigkeit verschiedener intra- und extraoraler Therapieverfahren fur die Behandlung der obstruktiven Schlafapnoe und des Schnarchens. Med Klin 92:167–174CrossRefGoogle Scholar
  28. 28.
    Camacho M, Malu OO, Kram YA et al (2016) Nasal dilators (breathe right strips and noZovent) for snoring and OSA: a systematic review and meta-analysis. Pulm Med 2016:4841310CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cahalin LP, Chase P, Arena R et al (2013) A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev 18:79–94CrossRefPubMedGoogle Scholar
  30. 30.
    Myers J, Gullestad L, Vagelos R et al (2000) Cardiopulmonary exercise testing and prognosis in severe heart failure: 14 mL/kg/min revisited. Am Heart J 139:78–84CrossRefPubMedGoogle Scholar
  31. 31.
    Ross R, Blair SN, Arena R et al (2016) Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134:e653–e699CrossRefPubMedGoogle Scholar
  32. 32.
    Alba AC, Adamson MW, MacIsaac J et al (2016) The added value of exercise variables in heart failure prognosis. J Card Fail 22:492–497CrossRefPubMedGoogle Scholar
  33. 33.
    Arena R, Myers J, Hsu L et al (2007) The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J Card Fail 13:462–469CrossRefPubMedGoogle Scholar
  34. 34.
    Guazzi M, Raimondo R, Vicenzi M et al (2007) Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol 50:299–308CrossRefPubMedGoogle Scholar
  35. 35.
    Leite JJ, Mansur AJ, de Freitas HF et al (2003) Periodic breathing during incremental exercise predicts mortality in patients with chronic heart failure evaluated for cardiac transplantation. J Am Coll Cardiol 41:2175–2181CrossRefPubMedGoogle Scholar
  36. 36.
    Sun XG, Hansen JE, Beshai JF et al (2010) Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol 55:1814–1823CrossRefPubMedGoogle Scholar
  37. 37.
    Swank AM, Horton J, Fleg JL et al (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail 5:579–585CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Auricchio A, Kloss M, Trautmann SI et al (2002) Exercise performance following cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. Am J Cardiol 89:198–203CrossRefPubMedGoogle Scholar
  39. 39.
    Larsen AI, Lindal S, Myreng K et al (2013) Cardiac resynchronization therapy improves minute ventilation/carbon dioxide production slope and skeletal muscle capillary density without reversal of skeletal muscle pathology or inflammation. Europace 15:857–864CrossRefPubMedGoogle Scholar
  40. 40.
    Shah MR, Hasselblad V, Gheorghiade M et al (2001) Prognostic usefulness of the six-minute walk in patients with advanced congestive heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 88:987–993CrossRefPubMedGoogle Scholar
  41. 41.
    Haass M, Zugck C, Kubler W (2000) The 6 min walking test: a cost-effective alternative to spiro-ergometry in patients with chronic heart failure? Z Kardiol 89:72–80CrossRefPubMedGoogle Scholar
  42. 42.
    Zugck C, Kruger C, Durr S et al (2000) Is the 6‑minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy? Eur Heart J 21:540–549CrossRefPubMedGoogle Scholar
  43. 43.
    Arzt M, Young T, Finn L et al (2006) Sleepiness and sleep in patients with both systolic heart failure and obstructive sleep apnea. Arch Intern Med 166:1716–1722CrossRefPubMedGoogle Scholar
  44. 44.
    Bitter T, Westerheide N, Hossain SM et al (2012) Symptoms of sleep apnoea in chronic heart failure – results from a prospective cohort study in 1,500 patients. Sleep Breath 16:781–791CrossRefPubMedGoogle Scholar
  45. 45.
    Zile MR, Claggett BL, Prescott MF et al (2016) Prognostic implications of changes in N‑terminal pro-B-type natriuretic peptide in patients with heart failure. J Am Coll Cardiol 68:2425–2436CrossRefPubMedGoogle Scholar
  46. 46.
    Cowie MR, Woehrle H, Wegscheider K et al (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373:1095–1105CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Linz D, Fox H, Bitter T et al (2016) Impact of SERVE-HF on management of sleep disordered breathing in heart failure: a call for further studies. Clin Res Cardiol 105:563–570CrossRefPubMedGoogle Scholar
  48. 48.
    Naughton MT (2012) Cheyne-Stokes respiration: friend or foe? Thorax 67:357–360CrossRefPubMedGoogle Scholar
  49. 49.
    Pfiefert H‑J, Hetzenecker A, Escourrou P et al (2016) Effekte einer adaptiven Servoventilation auf Herzrhythmusstörungen bei Patienten mit chronischer Herzinsuffizienz und schlafbezogenen Atmungsstörungen. Somnologie 20:96–105CrossRefGoogle Scholar
  50. 50.
    Faber L, Vlachojannis M, Oldenburg O et al (2012) Long-term follow-up of cardiac resynchronization therapy: mechanical resynchronization and reverse left ventricular remodeling are predictive for long-term transplant-free survival. Int J Cardiovasc Imaging 28:1341–1350CrossRefPubMedGoogle Scholar
  51. 51.
    Kaneko Y, Floras JS, Usui K et al (2003) Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med 348:1233–1241CrossRefPubMedGoogle Scholar
  52. 52.
    Mansfield DR, Gollogly NC, Kaye DM et al (2004) Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med 169:361–366CrossRefPubMedGoogle Scholar
  53. 53.
    Daubert M, Oldenburg O, Whellan DJ et al (2016) Treatment of sleep-disordered breathing and cardiac remodelling in heart failure with reduced ejection fraction: insights from the CAT-HF trial. Circulation 134:A17996Google Scholar
  54. 54.
    Arzt M, Schroll S, Series F et al (2013) Auto-servoventilation in heart failure with sleep apnoea: a randomised controlled trial. Eur Respir J 42:1244–1254CrossRefPubMedGoogle Scholar
  55. 55.
    Teschler H, Berthon-Jones M, Thompson AB et al (1996) Automated continuous positive airway pressure titration for obstructive sleep apnea syndrome. Am J Respir Crit Care Med 154:734–740CrossRefPubMedGoogle Scholar
  56. 56.
    McArdle N, Singh B, Murphy M et al (2010) Continuous positive airway pressure titration for obstructive sleep apnoea: automatic versus manual titration. Thorax 65:606–611CrossRefPubMedGoogle Scholar
  57. 57.
    Teschler H, Wessendorf TE, Farhat AA et al (2000) Two months auto-adjusting versus conventional nCPAP for obstructive sleep apnoea syndrome. Eur Respir J 15:990–995CrossRefPubMedGoogle Scholar
  58. 58.
    Zhu K, Roisman G, Aouf S et al (2015) All APAPs are not equivalent for the treatment of sleep disordered breathing: a bench evaluation of eleven commercially available devices. J Clin Sleep Med 11:725–734PubMedPubMedCentralGoogle Scholar
  59. 59.
    Morgenthaler TI, Aurora RN, Brown T et al (2008) Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine report. Sleep 31:141–147CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Arzt M, Obermeier R (2010) Obstructive Schlafapnoe bei Herzinsuffizienz. Somnologie 14:48–55CrossRefGoogle Scholar
  61. 61.
    Smith LA, Vennelle M, Gardner RS et al (2007) Auto-titrating continuous positive airway pressure therapy in patients with chronic heart failure and obstructive sleep apnoea: a randomized placebo-controlled trial. Eur Heart J 28:1221–1227CrossRefPubMedGoogle Scholar
  62. 62.
    McEvoy RD, Antic NA, Heeley E et al (2016) CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med 375:919–931CrossRefPubMedGoogle Scholar
  63. 63.
    Sawyer AM, Gooneratne NS, Marcus CL et al (2011) A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions. Sleep Med Rev 15:343–356CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Woehrle H, Graml A, Weinreich G (2010) Therapieadharenz bei CPAP-Patienten. Somnologie 14:135–139CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • Olaf Oldenburg
    • 1
  • Henrik Fox
    • 1
  • Birgit Wellmann
    • 2
  • Ulrich Thiem
    • 3
    • 4
  • Dieter Horstkotte
    • 1
  • Thomas Bitter
    • 1
  1. 1.Clinic for Cardiology, Herz- und Diabeteszentrum NRWUniversitätsklinik der Ruhr-Universität BochumBad OeynhausenGermany
  2. 2.Department of Clinical Studies in Cardiology, Herz- und Diabeteszentrum NRWRuhr-Universität BochumBad OeynhausenGermany
  3. 3.Department of GeriatricsElisabeth-Krankenhaus EssenEssenGermany
  4. 4.Department of Medical Informatics, Biometry and EpidemiologyRuhr-Universität BochumBochumGermany

Personalised recommendations