Advertisement

Somnologie

, Volume 21, Issue 4, pp 257–264 | Cite as

Inflammation in patients with obstructive sleep apnea and coronary artery disease

Robust correlations between inflammation markers and obstructive sleep apnea severity, and the impact of CPAP
  • Jens Spießhöfer
  • Heidi Schmalgemeier
  • Florian Schindhelm
  • Thomas Bitter
  • Simon Pearse
  • Henrik Fox
  • Anke Türoff
  • Dieter Horstkotte
  • Olaf Oldenburg
Originalien

Abstract

Background and objective

Obstructive sleep apnea (OSA) and coronary artery disease (CAD) are known to be associated with activation of inflammatory pathways. Treatment of OSA is hypothesized to lead to a reduction in inflammation. This study investigated the association between OSA and inflammation in CAD patients, and determined the effect of one night of continuous positive airway pressure (CPAP) therapy.

Materials and methods

Patients with stable CAD and moderate–severe OSA underwent overnight polysomnography (PSG) one night, and again during CPAP the following night. Cardiac stress and inflammation markers were determined in the morning after each PSG.

Results

Included were 23 patients with OSA (74% male; age 63 ± 10 years; ejection fraction 50 ± 8%). During CPAP, the most remarkable decreases from baseline were observed in the apnea–hypopnea index (AHI; from 35 ± 21 to 11 ± 11/h; p < 0.001), high-sensitivity C‑reactive protein (hs-CRP; 0.396 ± 0.428 to 0.308 ± 0.299 mg/dL; p = 0.006), and creatine kinase-MB (CKMB; 1.818 ± 1.014 to 1.551 ± 0.819 U/L; p = 0.018). After adjusting for age, gender, obesity, and heart failure severity as relevant confounders, there was a significant correlation between baseline AHI and myoglobin (r = 0.650; p = 0.002). Likewise, there were correlations between mean desaturation and CKMB (r = 0.606, p = 0.007), and between time spent with O2 saturation <90% (T < 90%) and interleukin 6 (r = 0.525, p = 0.013).

Conclusion

Among CAD patients there are clear correlations between surrogate measures of OSA severity, such as T < 90%, mean desaturation, and AHI, and inflammation, even after adjustment for obesity and the severity of heart failure as crucial confounding factors. Effective treatment of OSA with CPAP decreased cardiac stress and inflammation.

Keywords

Polysomnography Noninvasive ventilation Continuous positive airway pressure Heart failure Sleep 

Inflammation bei Patienten mit obstruktiver Schlafapnoe und koronarer Herzerkrankung

Robuste Korrelationen zwischen Inflammationsmarkern und dem Schweregrad der obstruktiven Schlafapnoe sowie Einfluss der CPAP-Therapie

Zusammenfassung

Hintergrund und Ziel der Arbeit

Sowohl die obstruktive Schlafapnoe (OSA) als auch die koronare Herzkrankheit (KHK) sind bekanntermaßen mit einer Aktivierung inflammatorischer Wege assoziiert. Eine Therapie der OSA führt mutmaßlich zu einer Verminderung der Entzündung. In dieser Studie wurde die Assoziation von OSA und KHK in Bezug auf die Entzündung und die Effekte einer einmaligen nächtlichen Überdrucktherapie (CPAP) untersucht.

Material und Methoden

Patienten mit stabiler KHK und moderater bis schwerer OSA unterzogen sich einer Nacht mit diagnostischer Polysomnographie (PSG) und einer PSG während der Therapie mit Überdruckbeatmung („continuous positive airway pressure“, CPAP) in der Folgenacht. Marker für kardiale Belastung und Entzündung wurden jeweils am Morgen nach der PSG bestimmt.

Ergebnisse

23 Patienten (74 % männlich; 63 ± 10 Jahre alt; Ejektionsfraktion: 50 ± 8 %) zeigten eine obstruktive Schlafapnoe. Unter CPAP wies der Apnoe-Hypopnoe-Index (AHI) einen signifikanten Abfall auf (AHI; von 35 ± 21 auf 11 ± 11/h; p < 0,001). Außerdem zeigte sich ein signifikanter Abfall im hochsensitiven CRP (hs-CRP; von 0,396 ± 0,428 auf 0,308 ± 0,299 mg/dl; p = 0,006) und in der Kreatininkinase-MB (CKMB; von 1,818 ± 1,014 auf 1,551 ± 0,819 U/l; p = 0,018). Es ergab sich – in einem multivariaten Modell nach Adjustierung für Alter, Geschlecht, Adipositas und Schwere der Herzinsuffizienz als wichtige Störfaktoren – eine signifikante Korrelation zwischen dem Ausgangs-AHI und Myoglobin (r = 0,650; p = 0,002). Darüber hinaus zeigten sich Korrelationen zwischen der mittleren Sauerstoffentsättigung und dem CKMB-Wert (r = 0,606; p = 0,007) sowie zwischen der Zeit mit einer Sauerstoffsättigung unter 90 % (T < 90 %) und Interleukin-6 (r = 0,525; p = 0,013).

Schlussfolgerungen

Bei Patienten mit KHK ergaben sich robuste Korrelationen zwischen Surrogatmarkern der Schwere der OSA, wie z. B. T < 90 %, mittlere Sauerstoffentsättigung und AHI, sowie Inflammationsmarkern, selbst nach Adjustierung für Adipositas und Schwere der Herzinsuffizienz als entscheidende Störfaktoren. Eine effektive Therapie der OSA mit CPAP vermindert kardialen Stress und Entzündung.

Schlüsselwörter

Obstruktive Schlafapnoe Nichtinvasive Beatmung Entzündung Herzinsuffizienz Schlaf 

Notes

Compliance with ethical guidelines

Conflict of interest

T. Bitter, H. Fox, and O. Oldenburg received honoraria for speaking at symposia and financial support for attending symposia by ResMed Germany Inc., Novartis, and Bayer; H. Fox received financial support for educational programs by Novartis. F. Schindhelm received financial support for attending a symposium by Itamar. J. Spießhöfer, H. Schmalgemeier, S. Pearse, A. Türoff, and D. Horstkotte declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Lloyd-Jones DM, Larson MG, Beiser A, Levy D (1999) Lifetime risk of developing coronary heart disease. Lancet 353:89–92CrossRefPubMedGoogle Scholar
  2. 2.
    Prinz C, Bitter T, Piper C, Horstkotte D, Faber L, Oldenburg O (2010) Patienten mit koronarer Herzerkrankung leiden häufig unter Schlafapnoe. Wien Med Wochenschr 160:349–355CrossRefPubMedGoogle Scholar
  3. 3.
    Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CS, Cowie MR, Kjeldsen K, Jankowska EA, Atar D, Butler J, Fiuzat M, Zannad F, Pitt B, O’Connor CM (2014) Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 64:2281–2293CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82–93CrossRefPubMedGoogle Scholar
  5. 5.
    Xie X, Pan L, Ren D, Du C, Guo Y (2013) Effects of continuous positive airway pressure therapy on systemic inflammation in obstructive sleep apnea: a meta-analysis. Sleep Med 14:1139–1150CrossRefPubMedGoogle Scholar
  6. 6.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874CrossRefPubMedGoogle Scholar
  7. 7.
    Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116):161–166CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Oldenburg O, Wellmann B, Buchholz A, Bitter T, Fox H, Thiem U, Horstkotte D, Wegscheider K (2015) Nocturnal hypoxemia is associated with increased mortality in stable heart failure patients. Eur Heart J 37:1695–1703CrossRefPubMedGoogle Scholar
  9. 9.
    Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM, American Academy of Sleep Medicine (2012) American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8:597–619PubMedPubMedCentralGoogle Scholar
  10. 10.
    Spicuzza L, Caruso D, Di Maria G (2015) Obstructive sleep apnoea syndrome and its management. Ther Adv Chronic Dis 6:273–285CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Palazzuoli A, Gallotta M, Quatrini I, Nuti R (2010) Natriuretic peptides (BNP and NT-proBNP): measurement and relevance in heart failure. Vasc Health Risk Manag 6:411–418CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Larkin EK, Rosen CL, Kirchner H, Storfer-Isser A, Emancipator JL, Johnson NL, Zambito AM, Tracy RP, Jenny NS, Redline S (2005) Variation of C‑reactive protein levels in adolescents: association with sleep-disordered breathing and sleep duration. Circulation 111:1978–1984CrossRefPubMedGoogle Scholar
  13. 13.
    Shamsuzzaman ASM, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, Somers VK (2002) Elevated C‑reactive protein in patients with obstructive sleep apnea. Circulation 105:2462–2464CrossRefPubMedGoogle Scholar
  14. 14.
    Ip MSM, Tse H‑F, Lam B, Tsang KWT, Lam W‑K (2004) Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med 169:348–353CrossRefPubMedGoogle Scholar
  15. 15.
    Randby A, Namtvedt SK, Einvik G, Hrubos-Strmø H, Hagve TA, Somers VK, Omland T (2012) Obstructive sleep apnea is associated with increased high-sensitivity cardiac troponin T levels. Chest 142:639–646CrossRefPubMedGoogle Scholar
  16. 16.
    Turker Y, Baltaci D, Turker Y, Ozturk S, Sonmez CI, Deler MH, Sariguzel YC, Sariguzel F, Ankarali H (2015) Investigation of relationship of visceral body fat and inflammatory markers with metabolic syndrome and its components among apparently healthy individuals. Int J Clin Exp Med 8:13067–13077PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gottlieb JD, Schwartz AR, Marshall J, Ouyang P, Kern L, Shetty V, Trois M, Punjabi NM, Brown C, Najjar SS, Gottlieb SS (2009) Hypoxia, not the frequency of sleep apnea, induces acute hemodynamic stress in patients with chronic heart failure. J Am Coll Cardiol 54:1706–1712CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ciccone MM, Favale S, Scicchitano P, Mangini F, Mitacchione G, Gadaleta F, Longo D, Iacoviello M, Forleo C, Quistelli G, Taddei S, Resta O, Carratù P (2012) Reversibility of the endothelial dysfunction after CPAP therapy in OSAS patients. Int J Cardiol 158:383–386CrossRefPubMedGoogle Scholar
  19. 19.
    Colish J, Walker JR, Elmayergi N, Almutairi S, Alharbi F, Lytwyn M, Francis A, Bohonis S, Zeglinski M, Kirkpatrick ID, Sharma S, Jassal DS (2012) Obstructive sleep apnea: effects of continuous positive airway pressure on cardiac remodeling as assessed by cardiac biomarkers, echocardiography, and cardiac MRI. Chest 141:674–681CrossRefPubMedGoogle Scholar
  20. 20.
    Barceló A, Esquinas C, Bauçà JM, Piérola J, De La Peña M, Arqué M, Sánchez-de-la-Torre M, Alonso-Fernández A, Barbé F (2014) Effect of CPAP treatment on plasma high sensitivity troponin levels in patients with obstructive sleep apnea. Respir Med 108:1060–1063CrossRefPubMedGoogle Scholar
  21. 21.
    Spießhöfer J, Fox H, Lehmann R, Efken C, Heinrich J, Bitter T, Körber B, Horstkotte D, Oldenburg O (2015) Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne-Stokes respiration compared to healthy volunteers. Heart Vessels 31:1117–1130CrossRefPubMedGoogle Scholar
  22. 22.
    Spießhöfer J, Heinrich J, Lehmann R, Efken C, Fox H, Bitter T, Körber B, Horstkotte D, Oldenburg O (2015) Respiratory effects of adaptive servoventilation therapy in patients with heart failure and Cheyne-Stokes respiration compared to healthy volunteers. Respiration 89:374–382CrossRefPubMedGoogle Scholar
  23. 23.
    Oldenburg O, Spießhöfer J, Fox H, Bitter T, Horstkotte D (2015) Cheyne-Stokes respiration in heart failure: friend or foe? Hemodynamic effects of hyperventilation in heart failure patients and healthy volunteers. Clin Res Cardiol 104:328–333CrossRefPubMedGoogle Scholar
  24. 24.
    Mehra R, Gottlieb DJ (2015) A paradigm shift in the treatment of central sleep apnea in heart failure. Chest 148:848–851CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • Jens Spießhöfer
    • 1
  • Heidi Schmalgemeier
    • 1
  • Florian Schindhelm
    • 1
  • Thomas Bitter
    • 1
  • Simon Pearse
    • 2
    • 3
  • Henrik Fox
    • 1
  • Anke Türoff
    • 1
    • 4
  • Dieter Horstkotte
    • 1
  • Olaf Oldenburg
    • 1
  1. 1.Clinic for Cardiology, Herz- und Diabeteszentrum Nordrhein-WestfalenRuhr-Universität BochumBad OeynhausenGermany
  2. 2.Department of CardiologyRoyal Brompton HospitalLondonUK
  3. 3.National Heart and Lung InstituteImperial College LondonLondonUK
  4. 4.Accident and Emergency DepartmentAsklepios Klinik WandsbekHamburgGermany

Personalised recommendations