Expression of antimicrobial peptide snakin-1 confers effective protection in rice against sheath blight pathogen, Rhizoctonia solani

Abstract

Rice sheath blight disease caused by the necrotrophic fungus Rhizoctonia solani, is an economically detrimental fungal disease which significantly affects rice productivity worldwide. Potato snakin-1, a cysteine-rich basic antimicrobial peptide (AMP), is a member of the novel Snakin AMP family. In order to assess the ability of the snakin-1 peptide in protecting rice against the sheath blight disease, we have developed transgenic rice constitutively expressing the snakin-1 peptide. The antimicrobial activity of snakin-1 was evaluated against the sheath blight pathogen Rhizoctonia solani both in vitro and in planta. Crude protein from transgenic rice leaves showed in vitro antifungal activity against Rhizoctonia solani. Moreover, in planta bioassay results also confirmed the same, wherein snakin-1 expressing rice plants showed significantly enhanced protection against the sheath blight disease. This report demonstrates how a member of the Snakin family of antimicrobial peptides has been successfully used to generate sheath blight resistance in rice, without compromising on its agronomic characteristics and at no phenotypic cost.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aerts AM, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue B, Thevissen K (2011) The antifungal plant defensin HsAFP1 from Heucher asanguinea induces apoptosis in Candida albicans. Front Microbiol 2:47

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Akhberdi O, Zhang Q, Wang H, Li Y, Chen L, Wang D, Yu X, Wei D, Zhu X (2018) Roles of phospholipid methyltransferases in pycnidia development, stress tolerance and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspore. Microbiol Res 210:33–42

    CAS  PubMed  Google Scholar 

  3. Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere CE (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Almasia NI, Nahirñak V, Hopp HE, Vazquez-Rovere CE (2020) Potato Snakin-1: an antimicrobial player of the trade-off between host defense and development. Plant Cell Rep 11:1–11

    Google Scholar 

  5. Barbosa Pelegrini P, del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 5:250349

    Google Scholar 

  6. Berrocal-Lobo M, Segura A, Moreno M, López G, Garcıa-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. J Plant Physiol 128:951–961

    CAS  Google Scholar 

  7. Boren J, Brindle KM (2012) Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 19:1561–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  9. Chen T, Zhang B (2016) Measurements of proline and malondialdehyde content and antioxidant enzyme activities in leaves of drought stressed cotton. Bio Protoc 6:e1913

    Google Scholar 

  10. Darqui FS, Radonic LM, Trotz PM, López N, Rovere CV, Hopp HE, Bilbao ML (2018) Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants. J Biotechnol 283:62–69

    CAS  PubMed  Google Scholar 

  11. Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A (2015) Pot level drought stress tolerance assay in tobacco through plant phenotyping and antioxidant assay. Bio Protoc 5:e1605

    Google Scholar 

  12. Das K, Datta K, Karmakar S, Datta SK (2019) Antimicrobial peptides—small but mighty weapons for plants to fight phytopathogens. Protein Pept Lett 26:720–742

    CAS  PubMed  Google Scholar 

  13. Dath AP (1990) Sheath blight disease of rice and its management. Associated Pub. Co., New Delhi

    Google Scholar 

  14. Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    CAS  Google Scholar 

  15. Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839

    CAS  Google Scholar 

  16. Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci J 160:405–414

    CAS  Google Scholar 

  17. du Pré S, Birch M, Law D, Beckmann N, Sibley GE, Bromley MJ, Read ND, Oliver JD (2020) The dynamic influence of olorofim (F901318) on the cell morphology and organization of living cells of Aspergillus fumigatus. J Fungi 6:47

    Google Scholar 

  18. Faccio P, Vazquez-Rovere C, Hopp E, Gonzalez G, Decima-Oneto C, Favret E, Paleo AD, Franzone P (2011) Increased tolerance to wheat powdery mildew by heterologous constitutive expression of the Solanum chacoense snakin-1 gene. Czech J Genet Plant Breed 47:S135–S141

    CAS  Google Scholar 

  19. García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248

    PubMed  PubMed Central  Google Scholar 

  20. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    CAS  Google Scholar 

  21. Ikediugwu FE, Webster J (1970) Antagonism between Coprinus heptemerus and other coprophilous fungi. Trans Br Mycol Soc 54:181–184

    Google Scholar 

  22. Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    CAS  PubMed  Google Scholar 

  23. Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18:59–69

    CAS  PubMed  Google Scholar 

  24. Jia Y, Correa-Victoria F, Mcclung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti MA, Pinson SR, Rutger JN, Correll JC (2007) Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis 91:485–489

    CAS  PubMed  Google Scholar 

  25. Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JA, Sudhakar D, Velazhahan R, Samiyappan R, Balasubramanian P (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci J 170:203–215

    CAS  Google Scholar 

  26. Karmakar S, Molla KA, Chanda PK, Sarkar SN, Datta SK, Datta K (2016) Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta 243:115–130

    CAS  Google Scholar 

  27. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb Protoc 21:pdb.prot4493

    Google Scholar 

  28. Keijer J (1996) The initial steps of the infection process in Rhizoctonia solani. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Springer, Dordrecht, Netherlands, pp 149–162

    Google Scholar 

  29. Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant Microbe Interact 14:1255–1260

    CAS  PubMed  Google Scholar 

  30. Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N (2003) A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    CAS  Google Scholar 

  31. Lee S-C, Han S-K, Kim SR (2015) Salt-and ABA-inducible OsGASR1 is involved in salt tolerance. J Plant Biol 58:96–101

    CAS  Google Scholar 

  32. Lin W, Anuratha C, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol 13:686–691

    CAS  Google Scholar 

  33. Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28:1065–1074

    CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  35. Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46(4):987–996

    CAS  PubMed  Google Scholar 

  36. Molla KA, Karmakar S, Chanda PK, Ghosh S, Sarkar SN, Datta SK, Datta K (2013) Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol Plant Pathol 14:910–922

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Molla KA, Karmakar S, Molla J, Bajaj P, Varshney RK, Datta SK, Datta K (2020) Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant Biotechnol J 18:895–915

    PubMed  PubMed Central  Google Scholar 

  38. Nahirñak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C (2012) Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. J Plant Physiol 158:252–263

    Google Scholar 

  39. Nahirñak V, Rivarola M, Almasia NI, Barrios Baron MP, Hopp HE, Vile D, Paniego N, Vazquez Rovere C (2019) Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato. PLoS ONE 14:e0214165

    PubMed  PubMed Central  Google Scholar 

  40. Paranidharan V, Palaniswami A, Vidhyasekaran P, Velazhahan R (2003) Induction of enzymatic scavengers of active oxygen species in rice in response to infection by Rhizoctonia solani. Acta Physiol Plant 25:91–96

    CAS  Google Scholar 

  41. Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17:159–171

    CAS  Google Scholar 

  42. Pin S, Liao XL, Zhang Y, Huang H (2012) Influencing factors on rice sheath blight epidemics in integrated rice-duck system. J Integr Agric 11:1462–1473

    Google Scholar 

  43. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. Methods Cell Biol 112:361–368

    Google Scholar 

  44. Rong W, Qi L, Wang J, Du L, Xu H, Wang A, Zhang Z (2013) Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genom 13:403–409

    CAS  Google Scholar 

  45. Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

    CAS  PubMed  Google Scholar 

  46. Rubinovich L, Weiss D (2010) The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant J 64:1018–1027

    CAS  PubMed  Google Scholar 

  47. Rubinovich L, Ruthstein S, Weiss D (2014) The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Mol Plant 7:244–247

    CAS  PubMed  Google Scholar 

  48. Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23

    CAS  PubMed  Google Scholar 

  49. Standard Evaluation System for Rice (2002) International Rice Research Institute, Philippines, pp 1–45

  50. Singh R, Sunder S, Kumar P (2016) Sheath blight of rice: current status and perspectives. Indian Phytopathol 69:340–351

    Google Scholar 

  51. Soares JR, de Melo EJ, da Cunha M, Fernandes KV, Taveira GB, da Silva PL, Pimenta S, Trindade FG, Regente M, Pinedo M, de la Canal L (2017) Interaction between the plant ApDef1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle-and caspase-dependent process occurring via uncontrolled oxidative stress. BBA Gen Subj 1861:3429–3443

    CAS  Google Scholar 

  52. Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci J 175:283–290

    CAS  Google Scholar 

  53. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356

    CAS  Google Scholar 

  54. Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, Das J, Jha G (2017) A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun 8:1–9

    CAS  Google Scholar 

  55. Tao L, Gao N, Chen S, Yu JH (2010) The choC gene encoding a putative phospholipid methyltransferase is essential for growth and development in Aspergillus nidulans. Curr Genet 56:283–296

    CAS  PubMed  Google Scholar 

  56. Thrane C, Olsson S, Harder Nielsen T, Sørensen J (1999) Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30:11–23

    CAS  Google Scholar 

  57. van Der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452

    PubMed  Google Scholar 

  58. Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

    CAS  PubMed  Google Scholar 

  59. Yuan S, Heath IB (1991) A comparison of fluorescent membrane probes in hyphal tips of Saprolegnia ferax. Exp Mycol 15:103–115

    Google Scholar 

Download references

Acknowledgements

The work was funded by Department of Biotechnology (DBT), Govt. of India, in the form of DBT Programme Support [Sanction no. BT/PR12656/COE/34/22/2015] and Indian Council of Agricultural Research (ICAR), Govt. of India [Sanction No. CS11/7/2014-1A-IV dated 26.11.2014]. The fellowship [Award Letter: DBT/JRF/14/AL/162/3215 dated 27.6.2014] from the Department of Biotechnology (DBT), Govt. of India, to Kaushik Das is highly acknowledged. We also heartily thank Mrs. Sayani Majumdar for laboratory assistance, Mr. Pratap Ghosh and Mr. Sujoy Mondal for greenhouse work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karabi Datta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, K., Datta, K., Sarkar, S.N. et al. Expression of antimicrobial peptide snakin-1 confers effective protection in rice against sheath blight pathogen, Rhizoctonia solani. Plant Biotechnol Rep 15, 39–54 (2021). https://doi.org/10.1007/s11816-020-00652-3

Download citation

Keywords

  • Transgenic rice
  • Disease resistance
  • Antifungal peptide
  • Snakin-1
  • Sheath blight
  • Rhizoctonia solani