Plant Biotechnology Reports

, Volume 13, Issue 2, pp 111–122 | Cite as

Label-free quantitative proteomic analysis determines changes in amino acid and carbohydrate metabolism in three cultivars of Jerusalem artichoke tubers

  • Cheol Woo Min
  • Won Yong Jung
  • Hyun Ji Park
  • Ki-Beom Moon
  • Hyunjun Ko
  • Jung-Hoon Sohn
  • Jae-Heung Jeon
  • Hyun-Soon Kim
  • Ravi Gupta
  • Sun Tae KimEmail author
  • Hye Sun ChoEmail author
Original Article


Jerusalem artichoke (JA) tubers are an important bio-economy developing crop because of its invaluable bioproducts in both food and biofuel aspects. However, the molecular mechanism of its tuberization, and the differences among different cultivars have been little studied to date. Therefore, here we selected PJA, DJA, and HJA cultivars of JA tubers, showing variations in their tuber epidermal pigmentation, underground tuberization, and inulin content. A comparative proteome analysis led to the identification of 402 proteins in the tubers of which 114 were significantly modulated among different cultivars. Gene Ontology (GO) analysis showed proteins related to the biosynthesis of amino acids and carbohydrate metabolism were differentially modulated in the tubers of three cultivars. Results from the inulin content measurement and proteome analysis suggest that Sucrose:sucrose 1-fructosyltransferase (1-SST) prioritizes inulin biosynthesis rather than rate-limiting enzyme fructan:fructan 1-fructosyltransferases (1-FFT). Furthermore, we confirmed the relationship between transcript-protein expression levels was in discord within inulin biosynthesis enzymes 1-SST and 1-FFT with the terms in previous RT-qPCR results using the same tubers. Our data represent the first report of comparative tuber proteome profiling of different JA and provide the metabolic and molecular basis for understanding carbohydrate metabolism in the tuber tissue.


Inulin Gel-free proteomics Jerusalem artichoke (Helianthus tuberosusTuber 



This work was supported by a grant from SSAC (Grant no. PJ013186032019) provided to STK and Agricultural Biotechnology Developmental Program (nos. 116091-3) grants from the Ministry of Agriculture, Food and Rural Affairs and KRIBB Research Initiative Program to HS Cho.

Author contributions

HSC and STK conceived and designed the study and wrote the manuscript. CWM, WYJ, and RG performed the proteome data analysis and wrote the manuscript. HJP and K-BM conducted phenotyping and molecular evaluation and wrote the manuscript. HK, H-SK, J-HS, and J-HJ analyzed the carbohydrate analysis and wrote the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

11816_2019_518_MOESM1_ESM.pdf (113 kb)
Supplementary material 1 (PDF 112 KB)
11816_2019_518_MOESM2_ESM.pdf (44 kb)
Supplementary material 2 (PDF 43 KB)
11816_2019_518_MOESM3_ESM.pdf (13 kb)
Supplementary material 3 (PDF 13 KB)
11816_2019_518_MOESM4_ESM.pptx (41 kb)
Supplementary material 4 (PPTX 41 KB)
11816_2019_518_MOESM5_ESM.pdf (206 kb)
Supplementary material 5 (PDF 206 KB)
11816_2019_518_MOESM6_ESM.xlsx (37 kb)
Supplementary material 6 (XLSX 36 KB)
11816_2019_518_MOESM7_ESM.xlsx (14 kb)
Supplementary material 7 (XLSX 14 KB)


  1. Bergh J, Freeman M, Sigurdsson B, Kellomaki S, Laitinen K, Niinisto S, Peitola H, Linder S (2003) Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. For Ecol Manag 183:327–340. CrossRefGoogle Scholar
  2. Binder S (2010) Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book 8:e0137. CrossRefGoogle Scholar
  3. Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z (2018) Formation and change of chloroplast-located plant metabolites in response to light conditions. Int J Mol Sci 19(3):E654. CrossRefGoogle Scholar
  4. Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. CrossRefGoogle Scholar
  5. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. CrossRefGoogle Scholar
  6. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom 13(9):2513–2526. CrossRefGoogle Scholar
  7. Crichton RR (2012) An overview of intermediary metabolism and bioenergetics. In: Crichton RR (ed) Biologicalinorganic chemistry. Elsevier, Oxford, pp 91–115. Google Scholar
  8. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol Biosyst 5(12):1512–1526. Google Scholar
  9. de Mello CS, Van Dijk JP, Voorhuijzen M, Kok EJ, Arisi AC (2016) Tuber proteome comparison of five potato varieties by principal component analysis. J Sci Food Agric 96(11):3928–3936. CrossRefGoogle Scholar
  10. Diederichsen A (2010) Phenotypic diversity of Jerusalem artichoke (Helianthus tuberosus L.) germplasmpreserved by the Canadian genebank. Helia 33:1–15. CrossRefGoogle Scholar
  11. Fernie AR, Willmitzer L, Trethewey RN (2002) Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci 7(1):35–41. CrossRefGoogle Scholar
  12. Geigenberger P (2003) Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 54(382):457–465. CrossRefGoogle Scholar
  13. Gupta R, Min CW, Kim SW, Wang Y, Agrawal GK, Rakwal R, Kim SG, Lee BW, Ko JM, Baek IY, Bae DW, Kim ST (2015) Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics 15(10):1706–1716. CrossRefGoogle Scholar
  14. Gupta R, Min CW, Kramer K, Agrawal GK, Rakwal R, Park KH, Wang Y, Finkemeier I, Kim ET (2018) A multi-omics analysis of Glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics 18(7):1–10 (1700366). CrossRefGoogle Scholar
  15. Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Natl Acad Sci USA 97(15):8699–8704. CrossRefGoogle Scholar
  16. Jung WY, Lee SS, Kim CW, Kim HS, Min SR, Moon JS, Kwon SY, Jeon JH, Cho HS (2014) RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PloS One 9(11):e111982. CrossRefGoogle Scholar
  17. Jung W, Lee S, Cho H (2016) Comparative transcriptome profiling and SSR marker identification in three Jerusalem artichoke (Helianthus tuberosus L.) cultivars exhibiting phenotypic variation. Plant Biotech Rep 10(6):447–461. CrossRefGoogle Scholar
  18. Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY, Park KH, Kim YC, Choi IS, Agrawal GK, Rakwal R, Kim ST (2013) Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics 13(14):2176–2179. CrossRefGoogle Scholar
  19. Kim SW, Gupta R, Min CW, Lee SH, Cheon YE, Meng QF, Jang JW, Hong CE, Jo IH, Kim ST (2018) Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J Ginseng Res. Google Scholar
  20. Kobmann J, Sonnewald U, Willmitzer L (1994) Reduction of the chloroplastic fructose-l,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J 6(5):637–650. CrossRefGoogle Scholar
  21. Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeong JC, Lee HS, Kwak SS (2012) Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars. Plant Sci 193–194:120–129. CrossRefGoogle Scholar
  22. Lemoine R, Camera SL, Atanassovva R et al (2013) Sucrose-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272. CrossRefGoogle Scholar
  23. Lunn J, Buttriss JL (2007) Carbohydrates and dietary fibre. Nutr Bull 32:21–64. CrossRefGoogle Scholar
  24. Ma X, Zhang L, Shao H, Zhang F, Ni F (2011) Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plants Res 5:1272–1279Google Scholar
  25. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. CrossRefGoogle Scholar
  26. Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS lett 583(24):3966–3973. CrossRefGoogle Scholar
  27. Marton A, Hopkins J, McLaughlin C, Johnson S, Warner M, LaHart D, Wright J (1993) Human biology and health. Pearson Prentice Hall, New JerseyGoogle Scholar
  28. Melzer E, O’Leary M (1987) Anapleurotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiol 84(1):58–60. CrossRefGoogle Scholar
  29. Min CW, Lee SH, Cheon YE, Han WY, Ko JM, Kang HW, Kim YC, Agrawal GK, Rakwal R, Gupta R, Kim ST (2017) In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J Proteom 169:125–135. CrossRefGoogle Scholar
  30. Mornkham T, Wangsomnuk PP, Mo XC, Francisco FO, Gao LZ, Kurzweil H (2016) Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.). Genet Mol Res. Google Scholar
  31. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264. CrossRefGoogle Scholar
  32. Pajarillo EA, Kim SH, Lee JY, Valeriano VD, Kang DK (2015) Quantitative proteogenomics and the reconstruction of the metabolic pathway in Lactobacillus mucosae LM1. Korean J Food Sci Anim Resour 35(5):692–702. CrossRefGoogle Scholar
  33. Pan L, Sinden MR, Kennedy AH, Chai H, Watson LE, Graham TL, Kinghorn AD (2009) Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochem Lett 2(1):15–18. CrossRefGoogle Scholar
  34. Panchev I, Delchev D, Kovacheva A, Slavov A (2011) Physicochemical characteristics of inulins obtained from Jerusalem artichoke (Helianthus tuberosus L.). Eur Food Res Technol 233:889–896. CrossRefGoogle Scholar
  35. Pranznik W, cieslik A, Filipiak-Flokiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung 46(3):151–157.<151::AID-FOOD151>3.0.CO;2-4 CrossRefGoogle Scholar
  36. Rademacher T, Hausler RE, Hirsch HJ, Zhang L, Lipka V, Weier D, Kreuzaler F, Peterhansel C (2002) An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J 32(1):25–39. CrossRefGoogle Scholar
  37. Roberfroid MB, Delzenne NM (1998) Dietary fructans. Ann Rev Nutr 18:117–143. CrossRefGoogle Scholar
  38. Ruttanaprasert R, Baterng P, Jogloy S, Vorasoot N, Kesmala T, Kanwar RS, Holbrrok CC, Patanothai A (2014) Genotypic variability for tuber yield, biomass, and drought tolerance in Jerusalem artichoke germplasm. Turk J Agric For 38:570–580. CrossRefGoogle Scholar
  39. Saengkanuk A, Nuchadomrong S, Jogloy S, Patanothai A, Srijaranai S (2011) A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur Food Res Technol 233:609. CrossRefGoogle Scholar
  40. Schmitz GJ, de Magalhaes Andrade J, Valle TL, Labate CA, do Nascimento JR (2016) Comparative proteome analysis of the tuberous roots of six cassava (Manihot esculenta) varieties reveals proteins related to phenotypic traits. J Agric Food Chem 64(16):3293–3301. CrossRefGoogle Scholar
  41. Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, Chen J (2015) Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism. Plant Physiol 167(3):671–681. CrossRefGoogle Scholar
  42. Slimestad R, Seljaasen R, Meijer K, Skar SL (2010) Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. J Sci Food Agric 90(6):956–964. Google Scholar
  43. Stanley JA, Stephan FN (2007) Biology and chemistry of Jerusalem artichoke: Helianthus tuberosus. L, 1st edn. CRC Press, Boca Raton FloridaGoogle Scholar
  44. Tyanova S, Temu T, Cox J (2016a) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. CrossRefGoogle Scholar
  45. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016b) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. CrossRefGoogle Scholar
  46. van Loo J, Coussement P, de Leenheer L, Hoebregs H, Smits G (1995) On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35(6):525–552. CrossRefGoogle Scholar
  47. van der Meer IM, Koops AJ, Hakkert JC, van Tunen AJ (1998) Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. Plant J 15(4):489–500. CrossRefGoogle Scholar
  48. Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(22):11033. CrossRefGoogle Scholar
  49. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232. CrossRefGoogle Scholar
  50. Voll LM, Hajirezaei MR, Czogalla-Peter C, Lein W, Stitt M, Sonnewald U, Bornke F (2009) Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants. New Phytol 184(3):607–618. CrossRefGoogle Scholar
  51. Yang L, He QS, Corscadden K, Udenigwe CC (2015) The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol Rep 5:77–88. CrossRefGoogle Scholar
  52. Yuan X, Gao M, Xiao H, Tan C, Du Y (2012) Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem 133(1):10–14. CrossRefGoogle Scholar
  53. Zhang A, Han D, Wang Y, Mu H, Zhang T, Yan X, Pang Q (2018) Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. Planta 247(3):715–732. CrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology 2019

Authors and Affiliations

  1. 1.Department of Plant Bioscience, Life and Industry Convergence Research InstitutePusan National UniversityMiryangRepublic of Korea
  2. 2.Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  3. 3.Cell Factory Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea

Personalised recommendations