Skip to main content
Log in

Expression of GNA and biting site-restricted cry1Ac in cotton; an efficient attribution to insect pest management strategies

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Insect-resistant transgenic cotton has been commercialized for two decades. Most of the introduced cultivars express Bt gene(s) constitutively under the control of 35S promoter in whole-plant tissues. However, there have been other promoters considered by researchers to confine the toxin expression to targeted organ and tissues. We developed a triple-gene construct including GNA, cry1Ac and cp4 epsps genes. We attempted to confine cry1Ac expression to insect biting sites by cloning it to downstream of a wound-inducible promoter isolated from Asparagus officinalis (AoPR1). Moreover, to broaden the range of resistance, GNA was driven by the 35S promoter to target the sap-sucking insects like aphids which impose large losses in cotton production. To select the transformants in selection medium and for glyphosate tolerance, GNA and cry1Ac genes were accompanied with cp4 epsps gene. Two binary vectors harboring desired genes were constructed and utilized in the study (pGTGNAoC1AC and pGTGN35C1AC). Transformation of cultivar GSN-12 was carried out by employing Agrobacterium tumefaciens strain EHA105. Plantlets were primarily screened under glyphosate (N-phosphonomethyl glycine) selection pressure and subsequently subjected to molecular and biotoxicity assays. Introduction of cry1Ac and GNA to cotton plant conferred resistance to Spodoptera littoralis and Aphis gossypii Glover. Restriction of cry1Ac toxin protein to insect biting sites along with a plant lectin attributes significantly to insect pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed HAA, Onarıcı S, Bakhsh A, Akdoğan G, Karakoç ÖC, Özcan SF, Aydın G, Aasım M, Ünlü L, Sancak C, Naimov S, Özcan S (2017) Targeted expression of insecticidal hybrid SN19 gene in potato leads to enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata Say) and tomato leafminer (Tuta absoluta Meyrick). Plant Biotechnol Rep 11:315–329

    Article  Google Scholar 

  • Anayol E, Bakhsh A, Karakoc OC, Onarıcı S, Köm D, Aasim M, Özcan SF, Barpete S, Khabbazi SD, Önol B, Sancak C, Khawar KM, Ünlü L, Özcan S (2016) Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10:83–94

    Article  Google Scholar 

  • Andow DA, Ives AR (2002) Monitoring and adaptive resistance management. Ecol Appl 12:1378–1390

    Article  Google Scholar 

  • Awan MF, Ali A, Muzaffar A, Abbas MA, Rao AQ, Qamar Z, Butt SJ, Khan GA, Rashid B, Nasi IA, Husnain T (2016) Transgenic cotton: Harboring broad term resistance against insect and weeds through incorporation of CEMB double Bt and cp4 epsps genes. Pak J Agric Sci 53 3:501–505

    Google Scholar 

  • Bakhsh A, Siddique S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74

    Article  CAS  Google Scholar 

  • Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, Caliskan ME, Hatipoglu R, Ozcan S, Ozkan H (2015) Insect resistant transgenic crops: retrospects and challenges. Turk J Agric For 39(4):531–548

    Article  CAS  Google Scholar 

  • Bakhsh A, Anayol E, Khabbazi SD, Sancak C, Ozcan S (2016) Development of insect-resistant cotton lines with targeted expression of insecticidal gene. Arch Biol Sci 68:773–780

    Article  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  PubMed  CAS  Google Scholar 

  • Blain PG (1990) Aspects of pesticide toxicology. Adverse Drug React Acute Poisoning Rev. 9:37–68

    PubMed  CAS  Google Scholar 

  • Breitler JC, Vassal JM, Catala MDM, Meynard D, Marfa V, Mele E et al (2004) Bt rice harbouring Cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2:417–430

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Charlton A, Cuthbert M, Barnett L, Ross L, Green M, Gillies L, Shaw K, Fletcher M, (1996) Identification of pesticide poisoning in wildlife. J. Chromatogr. A. 754:463–478

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium transformed rice plants expressing synthetic cryIA(b) and cryIA(c)genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Cousins YL, Lyon BR, Liewelly DJ (1991) Transformation of Australian cotton cultivars: prospects for cotton improvement. Aust J Plant Physiol 18:481–491

    Article  CAS  Google Scholar 

  • Curry D (2002) Farming and Food: A Sustainable Future. Report of the Policy Commission on the Future of Farming and Food. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Doyle JJ, Doyle JL, Hortoriun LHB (1990) Isolation of Plant DNA from Fresh Tissue. Focus 12:13–15

    Google Scholar 

  • EJF (2007) The deadly chemicals in cotton, environmental justice foundation in collaboration with Pesticide Action Network UK, London. ISBN No. 1-904523-10-2

  • Firek S, Ozcan S, Warner SA, Draper J (1993) A wound-induced promoter driving NPT-II expression limited to dedifferentiated cells at wound sites is sufficient to allow selection of transgenic shoots. Plant Mol Biol 22:129–142

    Article  PubMed  CAS  Google Scholar 

  • Firoozabady E, Deboer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    Article  PubMed  CAS  Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit Rev Biotechnol 19:227–276

    Article  CAS  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6:e22629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146(3):881–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould J, Magallanes-Cedeno M (1998) Adaptation of cotton shoot apex culture to agrobacterium-mediated transformation. Plant Mol Biol Report 16:1–10

    Article  Google Scholar 

  • Gulbitti-Onarici S, Zaidi MA, Taga I, Ozcan S, Altosaar I (2009) Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible promoter (AoPR1) isolated from Asparagus officinalis to control Heliothis virescens and Manduca sexta. Mol Biotechnol 42:341–349

    Article  PubMed  CAS  Google Scholar 

  • High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deployment of Bt rice. Trends Plant Sci 9:286–292

    Article  PubMed  CAS  Google Scholar 

  • Hussain T, Bakhsh A, Munir B, Hassan S, Rao AQ, Shahid AA, Rashid B, Husnain T (2014) Mendelian segregation pattern and expression studies of insecticidal gene (cry1Ac) in insect resistant cotton progeny. Emir J Food Agric 26:706–715

    Article  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from Bilberry (Vaccinium myrtillus L.) fruit. Mol Biol 19:201–203

    CAS  Google Scholar 

  • John ME (1997) Cotton crop improvement through genetic engineering. Crit Rev Biotechnol 17:185–208

    Article  CAS  Google Scholar 

  • Khabbazi SD, Bakhsh A, Sancak C, Özcan S (2016) Molecular Characterization of Snowdrop Lectin (GNA) and its Comparison with Reported Lectin Sequences of Amaryllidaceae. Czech J Genet Plant 52(3):94–100

    Article  CAS  Google Scholar 

  • Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against lepidopteran pest (Helicoverpa armigera). Span J Agr Res 9:296–300

    Article  Google Scholar 

  • Kiani S, Mohamed BB, Shehzad K, Jamal A, Shahid MN, Shahid AA, Husnain T (2013) Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests. J Biotechnol 166(3):88–96

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kim C, Li W, Kim T, Li Y, Zaidi MA, Altosaar I (2008) Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer. Euphytica 164:829–839

    Article  Google Scholar 

  • Kumar M, Shukla AK, Singh H, Tuli R (2009) Development of insect resistant transgenic cotton lines expressing Cry1EC gene from an insect bite and wound inducible promoter. J Biotechnol 140:143–148

    Article  PubMed  CAS  Google Scholar 

  • Latif A, Rao AQ, Khan MAU, Shahid N, Bajwa KS, Ashraf MA, Abbas MA, Azam M, Shahid AA, Nasir IA, Husnain T (2015) Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Res Notes 8:453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Zhu Z, Zhang T (2013) Development of transgenic cry1A(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and aphis gossypii glover. In: Baohong, Zhang (eds) Transgenic Cotton. Methods in Molecular Biology. Springer Science, New York, pp 199–210

    Chapter  Google Scholar 

  • Majeed A, Husnain T, Riazuddin S (2000) Transformation of virus resistant genotype of Gossypium hirsutum L. with pesticidal gene. Plant Biotechnol 17:105–110

    Article  CAS  Google Scholar 

  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum L. Biotechnol Prog 26:21–25

    PubMed  CAS  Google Scholar 

  • McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Nat Biotechnol 11:596–598

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43

    Article  Google Scholar 

  • Ozcan S, Firek S, Draper J (1993) Selectable marker genes engineered for specific expression in target cells for plant transformation. Nat Biotechnol 11:218–221

    Article  CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnol 8:939–943

    CAS  Google Scholar 

  • Poulsen M, Kroghsbo S, Schrøder M, Wilcks A, Jacobsen H, Miller A, Frenzel T, Danier J, Rychlik M, Shu Q, Emami K, Sudhakar D, Gatehouse A, Engel KH, Knudsen I (2007) A 90-day safety study in Wistar rats fed genetically modified rice expressing snowdrop lectin Galanthus nivalis (GNA). Food Chem Toxicol 45(3):350–363

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Hussain K, Khan MA, Bakhsh A, Rao AQ (2012) An insight of cotton leaf curl virus: a devastating plant pathogenic begomovirus. Pure Appl Biol 1:52–58

    Article  Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sapsucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166:1077–1085

    Article  CAS  Google Scholar 

  • Rao AQ, Bakhsh A, Nasir IA, Riazuddin S, Husnain T (2011) Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr J Biotechnol 10:1818–1826

    CAS  Google Scholar 

  • Rashid B, Saleem Z, Husnain T, Riazuddin S (2008) Transformation and inheritance of Bt genes in Gossypium hirsutum. J Plant Biol 51:248–254

    Article  CAS  Google Scholar 

  • Singh PK, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004) Development of a hybrid delta-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transgenic Res 13:397–410

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid. Sitobion avenae Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Tabashnik BE, Bre´vault T, Carrie`re Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  PubMed  CAS  Google Scholar 

  • Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S, Golabchian R (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6:164–173

    CAS  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Nat Biotechnol 5:263–266

    Article  CAS  Google Scholar 

  • Vajhala SKC, Sadumpati VK, Nunna HR, Sateesh Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS One 8:e72542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van den Berg J, Hilbeck A, Bøhn T (2013) Pest resistance to Cry1Ab Bt maize: field resistance, contributing factors and lessons from South Africa. Crop Prot 54:154–160

    Article  Google Scholar 

  • Wang Z, Zhang K, Sun X, Tang K, Zhang J (2005) Enhancement of resistance to aphids by introducing the snowdrop lectin gene GNA into maize plants. J Biosci 30:627–638

    Article  PubMed  CAS  Google Scholar 

  • Warner SA, Scott R, Draper J (1992) Characterization of a wound induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related (PR) proteins. Plant Mol Biol 19:555–561

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

    Article  CAS  Google Scholar 

  • Wu J, Luo X, Wang Z, Tian Y, Liang A, Sun Y (2008) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol Lett 30(3):547–554

    Article  PubMed  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The PhD. fellowship awarded by The Scientific and Technological Research Council of Turkey (TUBITAK)-BIDEB to Dr. S.D. Khabbazi is deeply appreciated. The authors are grateful to the Leicester University (UK) for giving permission to use AoPR1 promoter for research purposes, Dr. Selma Onarıcı (TÜBİTAK GMBE) for providing pJIT61.cry1Ac plasmid and Prof. Umut Toprak (Department of Crop Protection, Ankara University) for providing S. littoralis larvae.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saber Delpasand Khabbazi or Sebahattin Özcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabbazi, S.D., Khabbazi, A.D., Özcan, S.F. et al. Expression of GNA and biting site-restricted cry1Ac in cotton; an efficient attribution to insect pest management strategies. Plant Biotechnol Rep 12, 273–282 (2018). https://doi.org/10.1007/s11816-018-0493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-018-0493-8

Keywords

Navigation