Skip to main content
Log in

Jasmonic acid modulates xylem development by controlling polar auxin transport in vascular tissues

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Development of xylem cells is affected by environmental stresses such as drought and oxidative stress, and recent findings suggested that jasmonic acid (JA) mediates this process through interaction with other phytohormones such as cytokinin. In this study, we showed that polar auxin transport regulated by PIN3 and PIN7 is involved in the JA-mediated xylem development in vascular tissues. The mutant plants that lack the activity of PIN3 and PIN7 responsible for the auxin transport developed extra xylems in vascular tissues such as the JA-treated wild-type plants. Visualization of auxin response and xylem development in the roots treated with NPA, an inhibitor of polar auxin transport, suggested that disruption of polar auxin transport is involved in the xylem phenotype of pin3 pin7 double mutants. We also found that cytokinin increases expressions of PIN3 and PIN7 responsible for the auxin transport while JA decreases only PIN7. These suggested that PIN7-mediated polar auxin transport system modulates xylem development in response to JA. The finding that JA affects auxin distribution in root vascular tissues further supported this. Collectively, these suggest that JA promotes xylem development by disrupting auxin transport in vascular tissues, and the auxin efflux genes, more especially PIN7 whose expression is suppressed by JA mediates this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi A, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120

    Article  PubMed  CAS  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    Article  PubMed  Google Scholar 

  • Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen AP, Helariutta Y (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21(11):917–926

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39–44

    Article  PubMed  CAS  Google Scholar 

  • Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):103–106

    Article  PubMed  CAS  Google Scholar 

  • Chang SH, Lee S, Um TY, Kim J-K, Choi YD, Jang G (2017) pTAC10, a key subunit of plastid-encoded RNA polymerase, promotes chloroplast development. Plant Physiol 174(1):435–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23(9):3335–3352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chikkaputtaiah C, Debbarma J, Baruah I, Havlickova L, Boruah HPD, Curn V (2017) Molecular genetics and functional genomics of abiotic stress-responsive genes in oilseed rape (Brassica napus L.): a review of recent advances and future. Plant Biotechnol Rep 11(6):1–20

    Article  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108(5):661–673

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426(6963):147–153

    Article  PubMed  CAS  Google Scholar 

  • Ghuge SA, Tisi A, Carucci A, Rodrigues-Pousada RA, Franchi S, Tavladoraki P, Angelini R, Cona A (2015) Cell wall amine oxidases: new players in root xylem differentiation under stress conditions. Plants 4(3):489–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser M-T, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci 105(39):15208–15213

    Article  PubMed  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19(6):884–894

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Velázquez DA, González-Agüero M, Cisneros-Zevallos L (2015) Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci Rep 5:8608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang G, Choi YD (2018) Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid. Plant Signal Behav 13(3):e1451707

    Article  PubMed  CAS  Google Scholar 

  • Jang G, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138(11):2273–2281

    Article  PubMed  CAS  Google Scholar 

  • Jang G, Chang SH, Um TY, Lee S, Kim J-K, Choi YD (2017) Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 7(1):10212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17(1):22–31

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Wang F, López-bellido L, Garcia-mina JM, Si J (2013) Agronomic improvements through the genetic and physiological regulation of nitrogen uptake in wheat (Triticum aestivum L.). Plant Biotechnol Rep 7(2):129–139

    Article  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15(6):754–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109(1):7–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14(23):2938–2943

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyashima S, Sebastian J, Lee JY, Helariutta Y (2013) Stem cell function during plant vascular development. EMBO J 32(2):178–193

    Article  PubMed  CAS  Google Scholar 

  • Muraro D, Mellor N, Pound MP, Lucas M, Chopard J, Byrne HM, Godin C, Hodgman TC, King JR, Pridmore TP (2014) Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. Proc Natl Acad Sci 111(2):857–862

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MA (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56(418):1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Patil M, Ramu S, Jathish P, Sreevathsa R, Reddy PC, Prasad T, Udayakumar M (2014) Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnol Rep 8(2):161–169

    Article  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21:7–15

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120(9):2475–2487

    CAS  Google Scholar 

  • Šimášková M, O’Brien JA, Khan M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen JMA, Cuesta C, Hoyerová K (2015) Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat Commun 6:8717

    Article  PubMed  CAS  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286(5438):316–318

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01323901)” Rural Development Administration, Republic of Korea and the National Research Foundation of Korea grant funded by the Korean Government (MOE) [NRF-2014R1A1A2054261] and [NRF-2016R1D1A1B03931167]. A graduate research assistantship to S.L. from the Brain Korea 21 Plus project of the MOE is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Do Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, G., Lee, S., Chang, S.H. et al. Jasmonic acid modulates xylem development by controlling polar auxin transport in vascular tissues. Plant Biotechnol Rep 12, 265–271 (2018). https://doi.org/10.1007/s11816-018-0491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-018-0491-x

Keywords

Navigation