Bio-oil production from fast pyrolysis of furniture processing residue

Abstract

The pyrolysis characteristic of furniture processing residue (FPR), which was analyzed by thermogravimetric analysis (TGA) under nitrogen atmosphere, mainly decomposed between 230 °C and 500 °C. The FPR was submitted to fast pyrolysis in a bubbling fluidized-bed reactor (BFR) for converting into bio-oil, bio-char. The product distribution and characteristics of bio-oil depend on the operating conditions (temperature, fluidizing flow rate, particle size of sample). The bio-oil yield showed the highest value (50.68 wt%) at the pyrolysis temperature of 450 °C with a biomass particle size of 1.0 mm and a fluidization velocity of 2.0×Umf. The bio-oil had high selectivity for dioctyl phthalate, levoglucosan, and phenolic derivatives. The carbon number proportions in bio-oils of FPR were 32.74 wt% for C5–C11 fraction, 47.60 wt% for C12–C18 fraction and 19.38 wt% of C25–C38 fraction, respectively. The gas product included CO, CO2, H2, and hydrocarbons (C1–C4), and the selectivity of CO2 was the highest. The high heating value (HHV) of gas products was between 4.60 and 12.90 MJ/m3. The bio-char shows high HHV (23.87 MJ/kg) and high C content (62.47 wt%) that can be applied as a solid fuel.

Abbreviations

ASTM:

american society for testing and materials standard method

X:

conversion of sample material

U mf :

minimum fluidization flow rate of nitrogen [L/min]

References

  1. 1.

    H. W. Lee, H. Jeong, Y.-M. Ju and S. M. Lee, Korean J. Chem. Eng., 37, 1174 (2020).

    CAS  Article  Google Scholar 

  2. 2.

    S. U. Lee, K. Jung, G. W. Park, C. Seo, Y. K. Hong, W. H. Hong and H. N. Chang, Korean J. Chem. Eng., 29, 831 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    U. Moralı, N. Yavuzel and S. Şensöz, Bioresour. Technol., 221, 682 (2016).

    Article  Google Scholar 

  4. 4.

    H. V. Ly, S.-S. Kim, H. C. Woo, J. H. Choi, D. J. Suh and J. Kim, Energy, 93, 1436 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Y.-M. Kim, H. W Lee, S. H. Jang, J. Jeong, S. Ryu, S.-C. Jung and Y.-K. Park, Korean J. Chem. Eng., 37, 493 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    R. Azargohar, K. L. Jacobson, E. E. Powell and A. K. Dalai, J. Anal. Appl. Pyrolysis, 104, 330 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Q. Abbas, G. Liu, B. Yousaf, M. U. Ali, H. Ullah, M. A. M. Munir and R. Liu, J. Anal. Appl. Pyrolysis, 134, 281 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    S.-S. Kim, A. Shenoy and F. Agblevor, Bioresour. Technol., 156, 297 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    H. V. Ly, D.-H. Lim, J. W Sim, S.-S. Kim and J. Kim, Energy, 162, 564 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    H. V. Ly, S.-S. Kim, J. H. Choi, H. C. Woo and J. Kim, Energy Convers. Manag., 122, 526 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Y. J. Bae, C. Ryu, J.-K. Jeon, J. Park, D. J. Suh, Y.-W. Suh, D. Chang and Y.-K. Park, Bioresour. Technol., 102, 3512 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    J. L. Carrasco, S. Gunukula, A. A. Boateng, C. A. Mullen, W. J. DeSisto and M. C. Wheeler, Fuel, 193, 477 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    S. Papari, K. Hawboldt and R. Helleur, Ind. Eng. Chem. Res., 56, 1920 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    J. Solar, I. de Marco, B. M. Caballero, A. Lopez-Urionabarrenechea, N. Rodriguez, I. Agirre and A. Adrados, Biomass Bioenergy, 95, 416 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    R. García, C. Pizarro, A. G. Lavín and J. L. Bueno, Bioresour. Technol., 103, 249 (2012).

    Article  Google Scholar 

  16. 16.

    H. V. Ly, J. H. Choi, H. C. Woo, S.-S. Kim and J. Kim, Renew. Energy, 133, 11 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    S.-S. Kim and F. A. Agblevor, Bioresour. Technol., 16, 367 (2014).

    Article  Google Scholar 

  18. 18.

    T. Yuzawa, C. Watanabe, R. Freeman and S. Tsuge, Anal. Sci., 25, 1057 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee and D. T. Liang, Energy Fuels, 20, 388 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    A. Heidari, R. Stahl, H. Younesi, A. Rashidi, N. Troeger and A. A. Ghoreyshi, J. Ind. Eng. Chem., 20, 2594 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    J. Shen, X. S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes and C.-Z. Li, Fuel, 88, 1810 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    S. A. Channiwala and P. P. Parikh, Fuel, 81, 1051 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    S. Wang and Z. Luo, Pyrolysis of biomass (green alternative energy resource), de Gruyter Publication, China (2016).

    Google Scholar 

  24. 24.

    Y. Xue, S. Zhou, R. C. Brown, A. Kelkar and X. Bai, Fuel, 156, 40 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    S. Papari and K. Hawboldt, Renew. Sustain. Energy Rev., 52, 1580 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    V. Dhyani and T. Bhaskar, Renew. Energy, 129, 695 part B, (2018)

    CAS  Article  Google Scholar 

  27. 27.

    R. Li, Z. P. Zhong, B. S. Jin and A. J. Zheng, Bioresour. Technol., 119, 324 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    A. Gómez-Hens and M. Aguilar-Caballos, Trends Analyt. Chem., 22, 847 (2003).

    Article  Google Scholar 

  29. 29.

    N. Szczepańska, M. Rutkowska, K. Owczarek, J. Płotka-Wasylka and J. Namieśnik, Trends Analyt. Chem., 105, 173 (2018).

    Article  Google Scholar 

  30. 30.

    G. Chang, Y. Huang, J. Xie, H. Yang, H. Liu, X. Yin and C. Wu, Energy Convers. Manag., 124, 587 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    H. S. Heo, H. J. Park, Y. K. Park, C. Ryu, D. J. Suk, Y. W. Suk, J. H. Yim and S.-S. Kim, Bioresour. Technol., 101, S91 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    V. A. Bridgwater, Advances in thermochemical biomass conversion, Springer Publication, Netherlands (1993).

    Google Scholar 

  33. 33.

    Y. Cui, X. Hou and J. Chang, Materials, 10, 668 (2017).

    Article  Google Scholar 

  34. 34.

    X. Zhang, W. Yang and W. Blasiak, J. Anal. Appl. Pyrolysis, 96, 110 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Y. Wang, H. Song, L. Peng, Q. Zhang and S. Yao, Biotechnol. Biotechnol. Equip., 28, 981 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010092430).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jinsoo Kim or Seung-Soo Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ly, H.V., Tran, Q.K., Chun, B.H. et al. Bio-oil production from fast pyrolysis of furniture processing residue. Korean J. Chem. Eng. 38, 306–315 (2021). https://doi.org/10.1007/s11814-020-0688-x

Download citation

Keywords

  • Furniture Processing Residue
  • Fast Pyrolysis
  • Fluidized-bed Reactor
  • Bio-char
  • Bio-oil