Nickel-cobalt alloy coatings prepared by electrodeposition Part I: Cathodic current efficiency, alloy composition, polarization behavior and throwing power

Abstract

A systematic study was carried out to electrodeposit Ni-Co alloy coatings from a complexing acidic glycine bath on copper substrates. The effects of [Co2+]/[Ni2+] ratio, gly concentration, pH, current density and temperature on the current efficiency, Co content in the coatings and on polarization behavior were investigated. It was found that the CCE of these baths has a wide range starting from 55% up to a maximum value of 99.3%, relying on the operating parameters and the bath constituent. However, the CCE decreased from 96.2% to 84.8% when the gly content was enhanced from 25 to 150 g/L. On the other hand, the Co content in the deposit reached 97% (wt%) at [Co2+]/[Ni2+]=0.43, i= 16 mA cm2, t=10 min, T=20 °C. The codeposition of Co and Ni from acidic gly baths obeys the anomalous type of codeposition. The kinetic results indicate that the Tafel slope increased in the case of alloy deposition, while both the transfer coefficient αc and the exchange current i° decreased. Moreover, the obtained results indicated that increasing the Co2+ content in the electrolytic solution has an inhibiting impact on the kinetics of the nickel-cobalt alloy plating. The throwing power is enhanced with enhancing [Co2+]/[Ni2+] ratios, while the addition of gly decreases it. However, the outcomes of macrothrowing power, throwing index and Wagner numbers are in excellent accord.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. Mahalingam, K. Sundaram, S. Velumani, M. Raja, S. Thanikaikarasan, Y. D. Kim and R. Asomoza, Adv. Mater. Res., 68, 52 (2009).

    CAS  Google Scholar 

  2. 2.

    L. Tian, J. Xu and S. Xiao, Vacuum, 86, 27 (2011).

    CAS  Google Scholar 

  3. 3.

    G. Carac and A. Ispas, J. Solid State Electrochem., 16, 3457 (2012).

    CAS  Google Scholar 

  4. 4.

    B. Bakhit and A. Akbari, J. Coat. Technol. Res., 10(2), 285 (2013).

    CAS  Google Scholar 

  5. 5.

    M. C. Esteves, P. T. A. Sumodjo and E. J. Podlaha, Electrochim. Acta, 56, 9082 (2011).

    CAS  Google Scholar 

  6. 6.

    A. Karimzadeha, M. Aliofkhazraeia and F. C. Walsh, Surf. Coat. Technol., 372, 463 (2019).

    Google Scholar 

  7. 7.

    R. Abdel-Karim, M. Ramadan and S. M. El-Raghy, J. Nanomaterials, 2018, 13 (2018).

    Google Scholar 

  8. 8.

    S. Vasefi and M. Parrari, Korean J. Chem. Eng., 27(2), 422 (2010).

    CAS  Google Scholar 

  9. 9.

    H. Park, K. M. Kim, H. Kim, D.-K. Kim, Y. S. Won and S.-K. Kim, Korean J. Chem. Eng., 35(7), 1547 (2018).

    CAS  Google Scholar 

  10. 10.

    M.-G. Jeong, K. Zhuo, S. Cherevko and C.-H. Chung, Korean J. Chem. Eng., 29(12), 1802 (2012).

    CAS  Google Scholar 

  11. 11.

    K.-I. Jang, E. Hang and J. H. Kim, Korean J. Chem. Eng., 30(3), 620 (2013).

    CAS  Google Scholar 

  12. 12.

    Y. He, S. Hwang, D. A. Cullen, M. A. Uddin, L. Langhorst, B. Li, S. Karakalos, A. Kropf, E. C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K. L. More, G. Wang, S. Litster and G. Wu, Energy Environ. Sci., 12, 250 (2019).

    CAS  Google Scholar 

  13. 13.

    A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi and G. Leftheriotis, Mater. Today Energy, 15, 100365 (2020).

    Google Scholar 

  14. 14.

    A. Kamppinen, K. Aitola, A. Poskela, K. Miettunen and P. D. Lund, Electrochim. Acta, 335, 135652 (2020).

    CAS  Google Scholar 

  15. 15.

    B. Baptayev, A. Aukenova, D. Mustazheb and M. P. Balanay, J. Photochem. Photobiol. A, 383, 111977 (2019).

    CAS  Google Scholar 

  16. 16.

    N. Nita, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 18(5), 252 (2015).

    Google Scholar 

  17. 17.

    V. D. Jovic, B. M. Jovic, M. G. Pavlovic and V. Maksimovic, J. Solid State Electrochem., 10, 959 (2006).

    CAS  Google Scholar 

  18. 18.

    S. G. Kandalkar, H.-M. Lee, S. H. Seo, K. Lee and C.-K. Kim, Korean J. Chem. Eng., 28(6), 1464 (2011).

    CAS  Google Scholar 

  19. 19.

    J. Vijayakumar, S. Mohan, S. A. Kumar, S. R. Suseendiran and S. Pavithra, Int. J. Hydrogen Energy, 38, 10208 (2013).

    CAS  Google Scholar 

  20. 20.

    Y. H. You, C. D. Gu, X. L. Wang and J. P. Tu, Surf. Coat. Technol., 206, 3632 (2012).

    CAS  Google Scholar 

  21. 21.

    J.-m. Li, C. Cai, L.-x. Song, J.-f. Li, Z. Zhang, M.-z. Xue and Y.-g. Liu, Trans. Nonferrous Met. Soc. China, 23, 2300 (2013).

    CAS  Google Scholar 

  22. 22.

    L. Shi, C. F. Sun, P. Gao, F. Zhou and W. M. Liu, Surf. Coat. Technol., 200, 4870 (2006).

    CAS  Google Scholar 

  23. 23.

    A. N. Correia and S. A. S. Machado, J. Appl. Electrochem., 33, 367 (2003).

    CAS  Google Scholar 

  24. 24.

    M. Schwartz, N. V. Myung and K. Nobe, J. Electrochem. Soc., 151(7), C468 (2004).

    CAS  Google Scholar 

  25. 25.

    I. Z. Rahman, M. V. Khaddem-Mousavi, A. A. Gandhi, T. F. Lynch and M. A. Rahman, J. Phys. Conference Series, 61, 523 (2007).

    CAS  Google Scholar 

  26. 26.

    C. A. Harper, Electronic materials and processes handbook, McGraw Hill Professional, 1.6, New York NY (2003).

    Google Scholar 

  27. 27.

    C. Lupi, A. Dellera, M. Pasquali and P. Imperatori, Surf. Coat. Technol., 205, 5394 (2011).

    CAS  Google Scholar 

  28. 28.

    L. Wang, Y. Gao, Q. Xue, H. Liu and T. Xu, Appl. Surf. Sci., 242, 326 (2005).

    CAS  Google Scholar 

  29. 29.

    O. Ergenema, K. M. Sivaraman, S. Pane, E. Pellicer, A. Telekic, A. M. Hirt, M. D. Baro and B. J. Nelson, Electrochem. Acta, 56, 1399 (2011).

    Google Scholar 

  30. 30.

    D. Golodnitsky, Y. Rosenberg and A. Ulus, Electrochim. Acta, 47, 2707 (2002).

    CAS  Google Scholar 

  31. 31.

    Y. Yu-Fang, D. Bin and W. Zhao-Hui, Adv. Chem. Eng. Sci., 1, 27 (2011).

    Google Scholar 

  32. 32.

    J. Vazquez-Arenas and M. Pritzker, J. Solid State Electrochem., 17, 419 (2013).

    CAS  Google Scholar 

  33. 33.

    E. Gomez, S. Pane and E. Valles, Electrochim. Acta, 51, 146 (2005).

    CAS  Google Scholar 

  34. 34.

    H. El-Feky, M. Negem, S. Roy, N. Helal and A. Baraka, Sci. China. Chem., 56(10), 1446 (2013).

    CAS  Google Scholar 

  35. 35.

    S. Goldbach, R. De Kermadec and F. Lapicque, J. Appl. Electrochem., 30, 277 (2000).

    CAS  Google Scholar 

  36. 36.

    A. Karpuz, H. Kockar and M. Alper, Appl. Surf. Sci., 257, 3632 (2011).

    CAS  Google Scholar 

  37. 37.

    A. Karpuz, H. Kockar, M. Alper, O. Karaagac and M. Haciismailoglu, Appl. Surf. Sci., 258, 4005 (2012).

    CAS  Google Scholar 

  38. 38.

    A. Karpuz, H. Kockar and M. Alper, J. Mater. Sci. Mater. Electron., 24, 3376 (2013).

    CAS  Google Scholar 

  39. 39.

    D. Golodnitsky, N. V. Gudin and G. A. Volyanuk, J. Electrochem. Soc., 147(11), 4156 (2000).

    CAS  Google Scholar 

  40. 40.

    J. Idris, C. Christian and E. Gaius, J. Nano Mat., 2013, 1 (2013).

    Google Scholar 

  41. 41.

    S. Hassani, K. Raeissi, M. Azzi, D. Li, M. A. Golozar and J. A. Szpunar, Corros. Sci., 51, 2371 (2009).

    CAS  Google Scholar 

  42. 42.

    B. Bakhit and A. Akbari, J. Coat. Technol. Res, 10(2), 285 (2013).

    CAS  Google Scholar 

  43. 43.

    S. Hassani, K. Raeissi and M. A. Golozar, J. Appl. Electrochem., 38, 689 (2008).

    CAS  Google Scholar 

  44. 44.

    K. R. Marikkannu, G. P. Kalaignan and T. Vasudevan, J. Alloys Compd., 438, 332 (2007).

    CAS  Google Scholar 

  45. 45.

    E. Pellicer, S. Pane, K. M. Sivaraman, O. Ergeneman, S. Surinach, M. D. Baro, B. J. Nelson and J. Sort, Mater. Chem. Phys., 130, 1380 (2011).

    CAS  Google Scholar 

  46. 46.

    O. A. Taranina, N. V. Evreinova, I. A. Shoshina, V. N. Naraev and K. I. Tikhonov, Russ. J. Appl. Chem., 83(1), 58 (2010).

    CAS  Google Scholar 

  47. 47.

    Y. Zhang, L. Feng and W. Qiu, J. Mater. Sci., 54, 9507 (2019).

    CAS  Google Scholar 

  48. 48.

    R. Tarozaite, A. Sudavicius, Z. Sukackiene and E. Norkus, Trans. IMF, 92(3), 146 (2014).

    CAS  Google Scholar 

  49. 49.

    M. H. Gharahcheshmeh and M. H. Sohi, J. Appl. Electrochem., 40, 1563 (2010).

    CAS  Google Scholar 

  50. 50.

    J. C. Wei, M. Schwartz and K. Nobe, J. Electrochem. Soc., 155, D660 (2008).

    CAS  Google Scholar 

  51. 51.

    T. Boiadjieva, D. Kovacheva, L. Lyutov and M. Monev, J. Appl. Electrochem., 38, 1435 (2008).

    CAS  Google Scholar 

  52. 52.

    U. Lačnjevac, B. M. Jović and V D. Jovic, J. Electrochem. Soc., 159(5), D310 (2012).

    Google Scholar 

  53. 53.

    M. A. M. Ibrahim and R. M. Al Radadi, Mat. Chem. Phys., 151, 222 (2015).

    CAS  Google Scholar 

  54. 54.

    M. A. M. Ibrahim and R. M. Al Radadi, Int. J. Electrochem. Sci., 10, 4946 (2015).

    CAS  Google Scholar 

  55. 55.

    A. Brenner, Electrodeposition of alloys, Academic Press, New York, 1 (1963).

    Google Scholar 

  56. 56.

    M. A. M. Ibrahim and R. S. Bakdash, Surf. Coat. Technol., 282, 139 (2015).

    CAS  Google Scholar 

  57. 57.

    M. A. M. Ibrahim and R. S. Bakdash, Trans. IMF, 92(4), 218 (2014).

    CAS  Google Scholar 

  58. 58.

    M. A. M. Ibrahim, J. Chem. Technol. Biotechnol., 75, 745 (2000).

    CAS  Google Scholar 

  59. 59.

    R. Muri, K. Kurakane and T. Sekine, Bull. Chem. Soc. Jpn., 49, 335 (1976).

    Google Scholar 

  60. 60.

    A. E. Mohamed, S. M. Rashwan, S. M. Abdel-Wahaab and M. M. Kamel, J. Appl. Electrochem., 33(11), 1085 (2003).

    CAS  Google Scholar 

  61. 61.

    S. M. Rashwan, Mater. Chem. Phys., 89, 192 (2005).

    CAS  Google Scholar 

  62. 62.

    M. A. M. Ibrahim, S. S. Abd El Rehim, M. M. El Naggar and M. A. Abbass, J. Appl. Surf. Finish., 1(4), 293 (2006).

    Google Scholar 

  63. 63.

    R. M. Smith, A. E. Martell and R. J. Motekaitis, Critical Stability Constants of Metal Complexes Database, version 8.0, NIST, U.S. (2004).

  64. 64.

    G. Davies, K. Kustin and R. F. Pasternack, Inorg. Chem., 8, 1535 (1969).

    CAS  Google Scholar 

  65. 65.

    R. Guidelli, R. G. Compton, J. M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler and S. Trasatti, Pure Appl. Chem., 86(2), 245 (2014).

    CAS  Google Scholar 

  66. 66.

    M. Mouanga, L. Ricq, G. Douglade, J. Douglade and P. Bercot, Surf. Coat. Technol., 201, 762 (2006).

    CAS  Google Scholar 

  67. 67.

    C. Wagner, J. Electrochem. Soc., 98, 116 (1951).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magdy Ahmed Mahmoud Ibrahim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al Radadi, R.M., Ibrahim, M.A.M. Nickel-cobalt alloy coatings prepared by electrodeposition Part I: Cathodic current efficiency, alloy composition, polarization behavior and throwing power. Korean J. Chem. Eng. (2020). https://doi.org/10.1007/s11814-020-0552-z

Download citation

Keywords

  • Ni-Co Alloy Coatings
  • Cathodic Efficiency
  • Tafel Lines
  • Throwing Power
  • Polarization Behavior