Reducible oxide (CeO2, ZrO2, and CeO2-ZrO2) promoted Ni-MgO catalysts for carbon dioxide reforming of methane reaction

Abstract

Ni-MgO catalysts have been widely applied for carbon dioxide reforming (CDR) reaction due to their ability of anti-carbon formation. However, activation of Ni-MgO catalyst consumes considerable energy because of its very low reducibility. In this study, ZrO2, CeO2, and CeO2-ZrO2 promoted Ni-MgO catalysts were prepared via a facile coprecipitation method and applied to the CDR reaction. Among the prepared catalysts, the ZrO2-promoted Ni-MgO catalyst showed the highest methane conversion. The high catalytic performance of the ZrO2-promoted Ni-MgO catalyst is mainly due to easier reducibility, high Ni dispersion, and high specific surface area.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W.-J. Jang, D.-W. Jeong, J.-O. Shim and H.-S. Roh, Int. J. Hydrogen Energy, 38, 4508 (2013).

    CAS  Google Scholar 

  2. 2.

    A. T. Ashcroft, A. K. Cheetham, M. L. H. Green and P. D. F. Vernon, Nature, 352, 225 (1991).

    CAS  Google Scholar 

  3. 3.

    N. Rahemi, M. Haghighi, A. A. Babaluo and M. F. Jafari, Korean J. Chem. Eng., 31, 1553 (2014).

    CAS  Google Scholar 

  4. 4.

    G. Valderrama, A. Kiennemann and M. R. Goldwasser, J. Power Sources, 195, 1765 (2010).

    CAS  Google Scholar 

  5. 5.

    S. Özkara-Aydinoğlu, Int. J. Hydrogen Energy, 35, 12821 (2010).

    Google Scholar 

  6. 6.

    M. C. J. Bradford and M. A. Vannice, J. Catal., 173, 157 (1998).

    CAS  Google Scholar 

  7. 7.

    H.-S. Roh and K.-W. Jun, Catal. Surv. Asia, 12, 239 (2008).

    CAS  Google Scholar 

  8. 8.

    H.-S. Roh, H. S. Potdar and K.-W. Jun, Catal. Today, 93, 39 (2004).

    Google Scholar 

  9. 9.

    H.-S. Roh, H. S. Potdar, K.-W. Jun, J.-W. Kim and Y.-S. Oh, Appl. Catal. A-Gen., 276, 231 (2004).

    CAS  Google Scholar 

  10. 10.

    M. H. A. Shiraz, M. Rezaei and F. Meshkani, Korean J. Chem. Eng., 33, 3359 (2016).

    CAS  Google Scholar 

  11. 11.

    J. Wei and E. Iglesia, J. Catal., 224, 370 (2004).

    CAS  Google Scholar 

  12. 12.

    J. Wei and E. Iglesia, J. Phys. Chem. B, 108, 4094 (2004).

    CAS  Google Scholar 

  13. 13.

    J. Wei and E. Iglesia, Phys. Chem. Chem. Phys., 6, 3754 (2004).

    CAS  Google Scholar 

  14. 14.

    J. Wei and E. Iglesia, J. Catal., 225, 116 (2004).

    CAS  Google Scholar 

  15. 15.

    J. Wei and E. Iglesia, J. Phys. Chem. B, 108, 7253 (2004).

    CAS  Google Scholar 

  16. 16.

    S. A. Theofanidis, V. V. Galvita, H. Poelman and G. B. Marin, ACS Catal., 5, 3028 (2015).

    CAS  Google Scholar 

  17. 17.

    K.-Y. Koo, H.-S. Roh, Y.-T. Seo, D.-J. Seo, W.-L. Yoon and S.-B. Park, Appl. Catal. A-Gen., 340, 183 (2008).

    CAS  Google Scholar 

  18. 18.

    K.-W. Jun, H.-S. Roh and K. V. R. Chary, Catal. Surv. Asia, 11, 97 (2007).

    CAS  Google Scholar 

  19. 19.

    Y. H. Hu and E. Ruckenstein, J. Catal., 184, 298 (1999).

    CAS  Google Scholar 

  20. 20.

    Y. H. Wang, H. M. Liu and B. Q. Xu, J. Mol. Catal. A: Chem., 299, 44 (2009).

    CAS  Google Scholar 

  21. 21.

    Y. H. Hu and E. Ruckenstein, Langmuir, 13, 2055 (1997).

    CAS  Google Scholar 

  22. 22.

    Y. H. Hu and E. Ruckenstein, Catal. Rev., 44, 423 (2002).

    CAS  Google Scholar 

  23. 23.

    W.-J. Jang, J.-O. Shim, H.-M. Kim, S.-Y. Yoo and H.-S. Roh, Catal. Today, 324, 15 (2019).

    CAS  Google Scholar 

  24. 24.

    J.-O. Shim, W.-J. Jang, K.-W. Jeon, D.-W. Lee, H.-S. Na, H.-M. Kim, Y.-L. Lee, S.-Y. Yoo, B.-H. Jeon, H.-S. Roh and C.-H. Ko, Appl. Catal. A-Gen., 563, 163 (2018).

    CAS  Google Scholar 

  25. 25.

    S. Wang and G. Q. Lu, Appl. Catal. B-Env., 19, 267 (1998).

    Google Scholar 

  26. 26.

    S. Zhang, S. Muratsugu, N. Ishiguro and M. Tada, ACS Catal., 3, 1855 (2013).

    Google Scholar 

  27. 27.

    R. Debek, M. E. Galvez, F. Launay, M. Motak, T. Grzybek and P. D. Costa, Int. J. Hydrogen Energy, 41, 11611 (2016).

    Google Scholar 

  28. 28.

    L. Yao, J. Zhu, X. Peng, D. Tong and C. Hu, Int. J. Hydrogen Energy, 38, 7268 (2013).

    CAS  Google Scholar 

  29. 29.

    D. Liu, Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna and Y. Yang, J. Catal., 266, 380 (2009).

    CAS  Google Scholar 

  30. 30.

    E. C. Faria, R. C. R. Neto, R. C. Colman and F. B. Noronha, Catal. Today, 228, 138 (2014).

    CAS  Google Scholar 

  31. 31.

    V. Shanmugam, R. Zapf, S. Neuberg, V. Hessel and G. Kolb, Appl. Catal. B-Env., 203, 859 (2017).

    CAS  Google Scholar 

  32. 32.

    G. J. Hutchings and J. C. Védrine, Heterogeneous catalyst preparation, M. Baerns, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 215 (2004).

  33. 33.

    A. Platon, H.-S. Roh and D. L. King, Top. Catal., 46, 374 (2007).

    CAS  Google Scholar 

  34. 34.

    F. A. J. Al-Doghachi, U. Rashid and Y. H. Taufiq-Yap, RSC Adv., 6, 10372 (2016).

    CAS  Google Scholar 

  35. 35.

    A. Luengnaruemitchai, C. Pojanavaraphan, A. Kumyam, C. Thunyaratchatanon and E. Gulari, Int. J. Hydrogen Energy, 44, 1686 (2019).

    CAS  Google Scholar 

  36. 36.

    A. Arslan and T. Dogu, Int. J. Hydrogen Energy, 41, 16752 (2016).

    CAS  Google Scholar 

  37. 37.

    H.-S. Roh, K.-W. Jun, W.-S. Dong, J.-S. Chang, S.-E. Park and Y.-I. Joe, J. Mol. Catal. A-Chem., 181, 137 (2002).

    CAS  Google Scholar 

  38. 38.

    H.-M. Kim, W.-J. Jang, S.-Y. Yoo, J.-O. Shim, K.-W. Jeon, H.-S. Na, Y.-L. Lee, B.-H. Jeon, J.-W. Bae and H.-S. Roh, Int. J. Hydrogen Energy, 43, 262 (2018).

    CAS  Google Scholar 

  39. 39.

    Y. Qian, S. Liang, T. Wang, Z. Wang, W. Xie and X. Xu, Catal. Commun., 12, 851 (2011).

    CAS  Google Scholar 

  40. 40.

    I.-H. Choi, K.-R. Hwang, K.-Y. Lee and I.-G. Lee, Int. J. Hydrogen Energy, 44, 180 (2019).

    CAS  Google Scholar 

  41. 41.

    M. Miyamoto, A. Hamjima, Y. Oumi and S. Uemiya, Int. J. Hydrogen Energy, 43, 730 (2018).

    CAS  Google Scholar 

  42. 42.

    M. Rezaei and S. M. Alavi, Int. J. Hydrogen Energy, 44, 16516 (2019).

    CAS  Google Scholar 

  43. 43.

    R. Debek, M. Radlik, M. Motak, M. E. Galvez, W. Turek, P.D. Costa and T. Grzybek, Catal. Today, 257, 59 (2015).

    CAS  Google Scholar 

  44. 44.

    Y. Yang, J. Liu, W. Shen, J. Li and I. L. Chien, Energy, 158, 820 (2018).

    CAS  Google Scholar 

  45. 45.

    M. Khajenoori, M. Rezaei and F. Meshkani, Chem. Eng. Tech., 37, 957 (2014).

    CAS  Google Scholar 

  46. 46.

    F. Meshkani, M. Rezaei and M. Andache, J. Ind. Eng. Chem., 20, 1251 (2014).

    CAS  Google Scholar 

  47. 47.

    M. Usman and W. M. A. W. Daud, RSC Adv., 6, 38277 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Next Generation Carbon Upcycling Project (Project No. 2017M1A2A2044372) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jae-Oh Shim or Hyun-Seog Roh.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Jeon, K., Na, H. et al. Reducible oxide (CeO2, ZrO2, and CeO2-ZrO2) promoted Ni-MgO catalysts for carbon dioxide reforming of methane reaction. Korean J. Chem. Eng. 37, 1130–1136 (2020). https://doi.org/10.1007/s11814-020-0551-0

Download citation

Keywords

  • Carbon Dioxide Reforming of Methane
  • Reducible Oxide Promoters
  • Reducibility
  • Ni Dispersion
  • Surface Area