Optimization of heat exchanger network in the dehydration process using utility pinch analysis


Pinch analysis was applied to optimize the heat exchange network used in the moisture removal processes of energy plants. The moisture removal process absorbs moisture from natural gas using glycol as an absorbent, and the recycling process then separates moisture from the H2O-rich glycol in a regenerator column by applying the principle of vapor-liquid equilibria. For the dehydration process of a natural gas plant, the heat and mass flows are properly established and calculated by means of a static process model for a utility system embedded in the process based on the properties of natural gas. The results of the calculation generate a T-H composite curve that can be used to compare the pinch and to assess the installation and operating costs for the target temperature. The results show that approximately 61% of the total heat supply can be replaced with low-pressure steam, depending on the optimization of the heat exchanger network of the moisture removal process. Further, the annual operating costs can be reduced by about 17% in this case.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Eggleston, L. Buendia K. Wa, T. Ngara and K. Tanabe, IPCC guidelines for national greenhouse gas inventories, IPCC (2006).

  2. 2.

    G. C. Yeo, NICE, 28(1), 32 (2010).

    Google Scholar 

  3. 3.

    T. V. Nguyen, L. Pierobon and B. Elmegaard, Energy, 62, 23 (2013).

    Article  Google Scholar 

  4. 4.

    C. Bengtsson, R. Nordman and T. Berntsson, Appl. Therm. Eng., 22(9), 1069 (2002).

    Article  Google Scholar 

  5. 5.

    I. Quesada and I. E. Grossmann, Comput. Chem. Eng., 19(12), 1219 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    B. Linnhoff, Comput. Chem. Eng., 3, 295 (1979).

    Article  Google Scholar 

  7. 7.

    M. Ebrahim and A. Kawari, Appl. Energy, 65(1), 45 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    J. Geldermann, M. Treitz and O. Rentz, Eur. J. Opera. Res., 171, 1020 (2006).

    Article  Google Scholar 

  9. 9.

    H. W. Ryu, N. G. Kim, S. O. Kang, M. Oh and C. H. Lee, Korean J. Chem. Eng., 36(8), 1226 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    R. Smith, M. Jobson and L. Chen, Appl. Therm. Eng., 30(16), 2281 (2010).

    Article  Google Scholar 

  11. 11.

    M. Ebrahim and A. Kawari, Appl. Energy, 65(1), 45 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    D. Song, Y G. Yoon and C. J. Lee, Korean J. Chem. Eng., 35(12), 2348 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    S. G. Yoon, J. Lee and S. Park, Appl. Therm. Eng., 27(5), 886 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    C. Tuan, Y. L. Yeh, L. F. Hsu and T. C. Chen, Korean J. Chem. Eng., 29(3), 341 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    S. Mokhatab, W. Poe and J. Speight, Handbook of natural gas transmission and processing, 3rd Ed., Gulf Professional Publishing, Oxford (2015).

    Google Scholar 

  16. 16.

    D. Y. Peng, and D. B. Robinson, Ind. Eng. Chem. Fundam., 15(1), 59 (1976).

    CAS  Article  Google Scholar 

  17. 17.

    K. S. Pitzer, Thermodynamic, 3rd Ed., McGraw-Hill, New York (1955).

    Google Scholar 

  18. 18.

    I. C. Kemp, Pinch analysis and process integration: a user guide on process integration for the efficient use of energy, 2nd Ed., Elsevier Publication, Oxford (2008).

    Google Scholar 

  19. 19.

    Aspen energy analyzer: user guide, Aspen Technology Inc., Cambridge (2011)

  20. 20.

    Basic design package for LNG test bed train No. 1, GS E&C, Seoul (2010).

Download references


This research was supported by a grant (19IFIP-B089072-06) from the Ministry of Land Transportation Technology Business Support Program, funded by the Ministry of Land, Infrastructure and Transport of the Korean government.

Author information



Corresponding authors

Correspondence to Choon-Hyoung Kang or In Ju Hwang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, M., Rho, S.G., Kang, C. et al. Optimization of heat exchanger network in the dehydration process using utility pinch analysis. Korean J. Chem. Eng. (2020). https://doi.org/10.1007/s11814-020-0540-3

Download citation


  • Dehydration Process
  • Heat Exchanger Network
  • Pinch Analysis
  • Plant Engineering
  • Cold Region