Evaluation of long-term stability in capacitive deionization using activated carbon electrodes coated with ion exchange polymers

Abstract

Although capacitive deionization (CDI) is an energy-efficient and environment-friendly desalination technique, the severe performance decrease during long-term operation has been a critical obstacle to its practical application. Compared to various other approaches for stability improvement, the ion-exchange polymer (IEP) coating on the electrode seems to be both efficient and economically feasible. Nevertheless, there have only been limited studies aimed at understanding the role of IEP on stabilizing CDI operations. In this study, we investigated the effect of IEP on CDI performance by varying the amount of IEP coated on the electrodes. The polymer layer thickness was varied across the three IEP-coated electrodes used in this study (0, 30, and 100 μm). By monitoring the salt adsorption capacity (SAC) during the 50-h operation, it was found that the long-term stability of the system was dramatically improved upon using the IEP-coated electrodes. Additionally, the SAC retention was further improved with increasing IEP layer thickness. Based on the experimental analysis, we could conclude that the activated carbon particles’ coating layer acted as a barrier to block the water molecules from the electrode surface, hence impeding carbon oxidation. The outer polymer layer formed on the electrode could additionally block the diffusion of oxygen sources from the bulk solution to the electrode, which further reduced the possibility of carbon oxidation. The results suggest that the IEP coating is effective towards maintaining the performance of the electrodes, and thicker IEP layers increased the electrode stability.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon and V. Presser, Energy Environ. Sci., 8, 2296 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    J.-Y. Choi and J.-H. Choi, J. Ind. Eng. Chem., 16, 401 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli and S. Dai, Environ. Sci. Technol., 45, 10243 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    B. Jia and L. Zou, Chem. Phys. Lett., 548, 23 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    M.T.Z. Myint and J. Dutta, Desalination, 305, 24 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer and D. Aurbach, J. Phys. Chem. C, 115, 16567 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer and D. Aurbach, Electrochim. Acta, 106, 91 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    J. Yu, K. Jo, T. Kim, J. Lee and J. Yoon, Desalination, 439, 188 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    E. Avraham, M. Noked, Y. Bouhadana, A. Soffer and D. Aurbach, Electrochim. Acta, 56, 441 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    T. Kim, J. Yu, C. Kim and J. Yoon, J. Electroanal. Chem., 776, 101 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    J.-H. Lee, W.-S. Bae and J.-H. Choi, Desalination, 258, 159 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    A. Omosebi, X. Gao, J. Landon and K. Liu, ACS Appl. Mater. Interfaces, 6, 12640 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Bouhadana, M. Ben-Tzion, A. Soffer and D. Aurbach, Desalination, 268, 253 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    C. Zhang, D. He, J. Ma, W. Tang and T. D. Waite, Water Res., 128, 314 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    D. He, C. E. Wong, W. Tang, P. Kovalsky and T. D. Waite, Environ. Sci. Technol., 3, 222 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    X. Gao, A. Omosebi, J. Landon and K. Liu, Energy Environ. Sci., 8, 897 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    X. Gao, A. Omosebi, J. Landon and K. Liu, Environ. Sci. Technol., 49, 10920 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    P. Srimuk, L. Ries, M. Zeiger, S. Fleischmann, N. Jäckel, A. Tolosa, B. Krüner, M. Aslan and V. Presser, RSC Adv., 6, 106081 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    P. Srimuk, M. Zeiger, N. Jäckel, A. Tolosa, B. Krüner, S. Fleischmann, I. Grobelsek, M. Aslan, B. Shvartsev, M.E. Suss and V. Presser, Electrochim. Acta, 224, 314 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    X. Gao, A. Omosebi, N. Holubowitch, A. Liu, K. Ruh, J. Landon and K. Liu, Desalination, 399, 16 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    K. Jo, Y. Baek, C. Lee and J. Yoon, Appl. Sci., 9, 5055 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    J. Kang, T. Kim, K. Jo and J. Yoon, Desalination, 352, 52 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    J. Kang, T. Kim, H. Shin, J. Lee, J.-I. Ha and J. Yoon, Desalination, 398, 144 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley, New York (2000).

    Google Scholar 

  25. 25.

    J.-H. Jang and S.-M. Oh, J. Korean Electrochem. Soc., 13, 223 (2010).

    Article  Google Scholar 

  26. 26.

    P.M. Biesheuvel and A. van der Wal, J. Membr. Sci., 346, 256 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi and P. M. Biesheuvel,ACS Appl. Mater. Interfaces, 4, 1194 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    P. Długołęcki, B. Anet, S. J. Metz, K. Nijmeijer and M. Wessling, J. Membr. Sci., 346, 163 (2010).

    Article  Google Scholar 

  29. 29.

    R. Zhao, O. Satpradit, H.H. Rijnaarts, P.M. Biesheuvel and A. van der Wal, Water Res., 47, 1941 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    M.D. Andelman and G. S. Walker, US Patent, 6,709,560 (2004).

  31. 31.

    A. Jain, J. Kim, O. M. Owoseni, C. Weathers, D. Cana, K. Zuo, W. S. Walker, Q. Li and R. Verduzco, Environ. Sci. Technol., 52, 5859 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Y.-J. Kim and J.-H. Choi, Sep. Purif. Technol., 71, 70 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann and C. Merten, J. Power Sources, 176, 444 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (10082572, Development of Low Energy Desalination Water Treatment Engineering Package System for Industrial Recycle Water Production) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (NRF-2018R1C1B5086300).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Youngbin Baek or Jeyong Yoon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jo, K., Baek, Y., Kim, S. et al. Evaluation of long-term stability in capacitive deionization using activated carbon electrodes coated with ion exchange polymers. Korean J. Chem. Eng. 37, 1199–1205 (2020). https://doi.org/10.1007/s11814-020-0530-5

Download citation

Keywords

  • Capacitive Deionization
  • Desalination
  • Long-term Stability
  • Ion Exchange Polymer Coating
  • Carbon Oxidation