Skip to main content
Log in

Bath sonication for the scalable separation of semiconducting single walled carbon nanotubes

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Commercially available single-walled carbon nanotubes (SWNTs) consist of a mixture of metallic (m-SWNTs) and semiconducting SWNTs (sc-SWNTs), and therefore cannot be used as they are for applications where pure semiconductors or metallic materials are needed. Hence, the separation of sc-SWNTs from pristine SWNT mixtures is an essential process that precedes the evaluation of SWNTs. The polymer wrapping method, which is one of the well-known methods for separating sc-SWNTs, can separate sc-SWNTs by forming a sc-SWNT/polymer complex in which sc-SWNTs are selectively wrapped with a conductive polymer over metallic SWNTs. This process is generally realized using a tip sonicator, which enables the polymer wrapping and dispersion for SWNTs. However, this conventional tip sonication has several drawbacks, such as difficulties with respect to mass production, contamination, and high cost of equipment. In this work, the selective dispersion and separation of sc-SWNTs were achieved using bath sonication, which can overcome the drawbacks related to conventional tip sonication process. It was confirmed that bath sonication can achieve a similar level of sc-SWNT dispersion efficiency to that of tip sonication. The variation in the dispersion efficiencies with respect to the dispersion time, SWNT concentration, SWNT types, polymer concentration, and solvent types and concentrations was investigated. Furthermore, the dispersion stability was compared by measuring the particle sizes of the sc-SWNT/conductive polymer composites obtained using the bath sonication and tip sonication methods via electrophoretic light scattering as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Valentino, M. Sarno, N. G. Rainone, M. R. Nobile, P. Ciambelli, H. C. Neitzert and G. P. Simon, Phys. E, 40, 2440 (2008).

    Article  CAS  Google Scholar 

  2. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A. Windle, Polymer, 40, 5967 (1999).

    Article  CAS  Google Scholar 

  3. M. Biercuk, M. C. Llaguno, M. Radosavljevic, J. Hyun, A. T. Johnson and J. E. Fischer, Appl. Phys. Lett., 80, 2767 (2002).

    Article  CAS  Google Scholar 

  4. H. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming, J. Liu and O. Zhou, Adv. Mater., 14, 1387 (2002).

    Article  CAS  Google Scholar 

  5. T. Belin and F. Epron, Mater. Sci. Eng. B, 119, 105 (2005).

    Article  CAS  Google Scholar 

  6. M. Ouyang, J.-L. Huang, C. L. Cheung and C. M. Lieber, Science, 292, 702 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. J.-S. Lauret, C. Voisin, G. Cassabois, P. Roussignol, C. Delalande, A. Filoramo, L. Capes, E. Valentin and O. Jost, Phys. E, 21, 1057 (2004).

    Article  CAS  Google Scholar 

  8. W.-J. Kim, N. Nair, C. Y. Lee and M. S. Strano, J. Phys. Chem. C, 112, 7326 (2008).

    Article  CAS  Google Scholar 

  9. J.-E. Um, S. G. Song, P. J. Yoo, C. Song and W.-J. Kim, Appl. Surf. Sci., 429, 278 (2018).

    Article  CAS  Google Scholar 

  10. M. S. Arnold, S. I. Stupp and M. C. Hersam, Nano Lett., 5, 713 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp and M. C. Hersam, Nat. Nanotechnol., 1, 60 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. S. Ghosh, S. M. Bachilo and R. B. Weisman, Nat. Nanotechnol., 5, 443 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. H. Liu, D. Nishide, T. Tanaka and H. Kataura, Nat. Commun., 2, 309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G. S. Tulevski, A. D. Franklin and A. Afzali, ACS Nano, 7, 2971 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. V. L. Davis, S. Quaranta, C. Cavallo, A. Latini and F. Gaspari, Sol. Energy Mater. Sol. Cells, 167, 162 (2017).

    Article  CAS  Google Scholar 

  16. K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D: Appl. Phys., 31, L34 (1998).

    Article  CAS  Google Scholar 

  17. R. Krupke, F. Hennrich, H. v. Löhneysen and M. M. Kappes, Science, 301, 344 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. J. Li, Q. Zhang, N. Peng and Q. Zhu, Appl. Phys. Lett., 86, 153116 (2005).

    Article  CAS  Google Scholar 

  19. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson and N. G. Tassi, Nat. Mater., 2, 338 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. X. Tu and M. Zheng, Nano Res., 1, 185 (2008).

    Article  CAS  Google Scholar 

  21. X. Tu, S. Manohar, A. Jagota and M. Zheng, Nature, 460, 250 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. D. T. Lee, J. W. Chung, G. Park, Y. T. Kim, C. Y. Lee, Y. Cho, P. J. Yoo, J. H. Han, H. J. Shin and W. J. Kim, Appl. Surf. Sci., 429, 264 (2018).

    Article  CAS  Google Scholar 

  23. H. Wang, G. I. Koleilat, P. Liu, G. Jiménez-Osés, Y.-C. Lai, M. Vosgueritchian, Y. Fang, S. Park, K. N. Houk and Z. Bao, ACS Nano, 8, 2609 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Yang, L. Ding, J. Han, Z. Zhang and L.-M. Peng, ACS Nano, 11, 4124 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. H. Wang and Z. Bao, Nano Today, 10, 737 (2015).

    Article  CAS  Google Scholar 

  26. H. W. Lee, Y. Yoon, S. Park, J. H. Oh, S. Hong, L. S. Liyanage, H. Wang, S. Morishita, N. Patil and Y. J. Park, Nat. Commun., 2, 541 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. C. Caddeo, C. Melis, L. Colombo and A. Mattoni, J. Phys. Chem. C, 114, 21109 (2010).

    Article  CAS  Google Scholar 

  28. H. Wang, B. Hsieh, G. Jiménez-Osés, P. Liu, C. J. Tassone, Y. Diao, T. Lei, K. N. Houk and Z. Bao, Small, 11, 126 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. S. M. Tabakman, K. Welsher, G. Hong and H. Dai, J. Phys. Chem. C, 114, 19569 (2010).

    Article  CAS  Google Scholar 

  30. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley and J. M. Tour, Chem. Commun., 193 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woo-Jae Kim or Jaehyun Hur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G., Kim, WJ. & Hur, J. Bath sonication for the scalable separation of semiconducting single walled carbon nanotubes. Korean J. Chem. Eng. 36, 635–641 (2019). https://doi.org/10.1007/s11814-019-0244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0244-8

Keywords

Navigation