Skip to main content
Log in

Cell structure destruction and its kinetics during hydrothermal treatment of sewage sludge

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

During hydrothermal treatment (HT) of sewage sludge (SS), its cell structure is decomposed and its organic content is released. An increase in the total organic carbon content in the liquid phase was experimentally determined in the temperature range of 130–250 °C with a fixed pressure of 5MPa and residence time of 10min. By using the Arrhenius equation, the pre-exponential factor and activation energy were successfully determined for the first time for the degradation of SS cells as 3.96×1010s-1 and 115 kJ mol-1, respectively, for the temperature range of 130–250 °C. Increasing the HT temperature increasingly destroyed the cell structure of SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Li, Z. Ma, T. Yang, B. Li, L. Wei and Y. Sun, J. Supercrit. Fluids, 138, 115 (2018).

    Article  CAS  Google Scholar 

  2. O. Suárez-Iglesias, J. L. Urrea, P. Oulego, S. Collado and M. Díaz, Sci. Total Environ., 584–585, 921 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. M. S. Nawaz and M. Ahsan, Alexandria Eng. J., 53, 717 (2014).

    Article  Google Scholar 

  4. X. Li, S. Guo, Y. Peng, Y. He, S. Wang, L. Li and M. Zhao, Biochem. Eng. J., 139, 139 (2018).

    Article  CAS  Google Scholar 

  5. L. Sahlström, A. Aspan, E. Bagge, M. L. Danielsson-Tham and A. Albihn, Water Res., 38, 1989 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. WHO, Unicef, Global Water Supply and Sanitation Assessment 2000 Report, Water Supply, 87 (2000).

  7. F. Jin and H. Enomoto, BioResources, 4, 704 (2009).

    CAS  Google Scholar 

  8. T. Karak and P. Bhattacharyya, Resour. Conserv. Recycl., 55, 400 (2011).

    Article  Google Scholar 

  9. W. Qiao, W. Wang, X. Wan, Z. Xia and Z. Deng, J. Residuals Sci. Technol., 7, 7 (2010).

    CAS  Google Scholar 

  10. G. Langergraber and E. Muellegger, Environ. Int., 31, 433 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. S. Deng, H. Tan, X. Wang, F. Yang, R. Cao, Z. Wang and R. Ruan, Bioresour. Technol., 239, 302 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. T. Liu, Y. Guo, N. Peng, Q. Lang, Y. Xia, C. Gai and Z. Liu, J. Anal. Appl. Pyrolysis, 126, 298 (2017).

    Article  CAS  Google Scholar 

  13. M. Gong, W. Zhu, H. Zhang, Y. Su and Y. Fan, J. Supercrit. Fluids, 113, 112 (2016).

    Article  CAS  Google Scholar 

  14. H. Han, S. Hu, S. S. A. Syed-Hassan, Y. Xiao, Y. Wang, J. Xu, L. Jiang, S. Su and J. Xiang, Bioresour. Technol., 236, 138 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. C. He, C. L. Chen, A. Giannis, Y. Yang and J. Y. Wang, Renew. Sustain. Energy Rev., 39, 1127 (2014).

    Article  CAS  Google Scholar 

  16. T. Yanagida, T. Minowa, A. Nakamura, Y. Matsumura and Y. Noda, J. Jpn. Inst. Energy, 87, 731 (2008).

    Article  CAS  Google Scholar 

  17. S. Petzet, B. Peplinski and P. Cornel, Water Res., 46, 3769 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. L. Qian, S. Wang and P. E. Savage, Bioresour. Technol., 232, 27 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. L. Huan, J. Yiying, R. B. Mahar, W. Zhiyu and N. Yongfeng, J. Hazard. Mater., 161, 1421 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. J. Diak, B. Örmeci and C. Proux, Water Sci. Technol., 63, 1309 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. J. L. Urrea, M. García, S. Collado, P. Oulego and M. Díaz, J. Environ. Manage., 206, 284 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. J. L. Urrea, S. Collado, A. Laca and M. Díaz, J. Water Process Eng., 5, 153 (2015).

    Article  Google Scholar 

  23. R. T. Haug, D. C. Stuckey, J. M. Gossett and P. L. Mccarty, Water Pollut. Control Fed., 50, 73 (1978).

    CAS  Google Scholar 

  24. Y. Wu, K. Song, Y. Jiang, X. Sun and L. Li, Biochem. Eng. J., 139, 132 (2018).

    Article  CAS  Google Scholar 

  25. J. A. Rollin, Y. J. Bomble, P. C. St. John and A. K. Stark, Biochem. Eng. J., in press (2018).

    Google Scholar 

  26. K. Cantrell, K. Ro, D. Mahajan, M. Anjom and P. G. Hunt, Ind. Eng. Chem. Res., 46, 8918 (2007).

    Article  CAS  Google Scholar 

  27. M.-M. Titirici, A. Thomas and M. Antonietti, New J. Chem., 31, 787 (2007).

    Article  CAS  Google Scholar 

  28. J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M.-M. Titirici, C. Fühner, O. Bens, J. Kern and K.-H. Emmerich, Biofuels, 2, 89 (2011).

    Article  Google Scholar 

  29. A. Kato and Y. Matsumura, J. Jpn. Inst. Energy, 82, 97 (2003).

    Article  CAS  Google Scholar 

  30. R. Matsumoto, T. Aki, Y. Okamura, T. Tajima, Y. Nakashimada and Y. Matsumura, J. Jpn. Inst. Energy, 93, 531 (2014).

    Article  Google Scholar 

  31. F. Yin, H. Chen, G. Xu, G. Wang and Y. Xu, Bioresour. Technol., 198, 351 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. J. Moon, T. Y. Mun, W. Yang, U. Lee, J. Hwang, E. Jang and C. Choi, Energy Convers. Manag., 103, 401 (2015).

    Article  Google Scholar 

  33. T. Yoshida, H. Nonaka and Y. Matsumura, J. Jpn. Inst. Energy, 84, 544 (2005).

    Article  CAS  Google Scholar 

  34. P. Petchpradab, T. Yoshida, T. Charinpanitkul and Y. Matsumura, Ind. Eng. Chem. Res., 48, 4587 (2009).

    Article  CAS  Google Scholar 

  35. J. Yu, M. Guo, X. Xu and B. Guan, Water Res., 50, 10 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. T. Kyotani, S. Hayashi and A. Tomita, Energy Fuels, 5, 683 (1991).

    Article  CAS  Google Scholar 

  37. L. Wang, A. Li and Y. Chang, Water Res., 112, 72 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt and S. B. Jones, Bioresour. Technol., 178, 147 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. U. Çolak, H. Durak and S. Genel, J. Supercrit. Fluids, 140, 53 (2018).

    Article  CAS  Google Scholar 

  40. the National Environmental Services Center, Pipeline, 14, 1 (2003).

  41. Y. Unami, M. Kanna, T. Yanagida and Y. Matsumura, Pa-216, In: Proc. 8th Conference on Biomass Science, Higashi-Hiroshima, Jan. 9-10, 2013, Higashi-Hiroshima, Japan (in Japanese).

    Google Scholar 

  42. J. G. Everett, J. Water Pollut. Control. Fed., 44, 92 (1972).

    CAS  PubMed  Google Scholar 

  43. L. Wang, L. Zhang and A. Li, Water Res., 65, 85 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. M. Imbierowicz and A. Chacuk, Water Res., 46, 5747 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. R. Mohamad, T. Aki, Y. Nakashimada, Y. Okamura, T. Tajima and Y. Matsumura, J. Japan Pet. Inst., 59, 149 (2016).

    Article  CAS  Google Scholar 

  46. M. Goto, T. Nada, A. Kodama and T. Hirose, Ind. Eng. Chem. Res., 38, 1863 (1999).

    Article  CAS  Google Scholar 

  47. C. Bougrier, J. P. Delgenès and H. Carrère, Chem. Eng. J., 139, 236 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiko Matsumura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrullah, A., Paksung, N. & Matsumura, Y. Cell structure destruction and its kinetics during hydrothermal treatment of sewage sludge. Korean J. Chem. Eng. 36, 433–438 (2019). https://doi.org/10.1007/s11814-018-0212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0212-8

Keywords

Navigation