Skip to main content
Log in

Integrated production of polymer-grade lactide from aqueous lactic acid by combination of heterogeneous catalysis and solvent crystallization with ethanol

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Lactide, a six-membered dimeric cyclic ester of lactic acid, is a key building block of polylatic acid, a representative bio-based biodegradable polymer. As an alternative to the conventional lactide production process of a two-step polymerization and depolymerization from lactic acid, we developed a novel continuous and one-step synthesis of optically pure lactide from lactic acid under atmospheric conditions with SnO2-SiO2 nanocomposites as heterogeneous catalyst. In this catalytic process, lactide was obtained in vapor phase together with water vapor and the unreacted lactic acid. After optimization of crystallization process using ethanol solvent, lactide crystals with 99 wt% purity and a lactide yield of 78 wt% were obtained. Based on these results, an integrated process for high-yield polymer-grade lactide production from aqueous lactic acid could be constructed by combination of the heterogeneous catalysis and crystallization with ethanol, which is more environmentally friendly as compared to the conventional two-step prepolymer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon and M. Poliakoff, Science, 337, 695 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. D. Saygin, D. J. Gielen, M. Draeck, E. Worrell and M. K. Patel, Renew. Sustain. Energy Rev., 40, 1153 (2014).

    Article  CAS  Google Scholar 

  3. A. Corma, S. Iborra and A. Velty, Chem. Rev., 107, 2411 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. S. Inkinen, M. Hakkarainen, A. C. Albertsson and A. Södergård, Biomacromol., 12, 523 (2011).

    Article  CAS  Google Scholar 

  5. S. Jacobsen, P. H. Degee, H. G. Fritz, P. H. Dubois and R. Jerome, Polym. Eng. Sci., 39, 1311 (1999).

    Article  CAS  Google Scholar 

  6. N. Saito, T. Okada, H. Horiuchi, N. Murakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki and K. Takaoka, Nature Biotechnol., 19, 332 (2001).

    Article  CAS  Google Scholar 

  7. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson and R. L. Borchardt, US Patent 5,247,059 (1993).

    Google Scholar 

  8. J. Meerdink and N. D. A. Sädergard, US Patent 8,053, 584 B2 (2011).

    Google Scholar 

  9. D. K. Yoo and D. Kim, Macromol. Res., 13, 510 (2006).

    Article  Google Scholar 

  10. P. P. Upare, Y. K. Hwang, J.–S. Chang and D. W. Hwang, Ind. Eng. Chem. Res., 51, 4837 (2012).

    Article  CAS  Google Scholar 

  11. P. P. Upare, M. Lee, D. W. Hwang, Y. K. Hwang and J.–S. Chang, Catal. Comm., 56, 179 (2014).

    Article  CAS  Google Scholar 

  12. M. Dusselier, P. Van Wouwe, A. Dewaele, P. A. Jacobs and B. F. Sels, Science, 349, 78 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. P. Van Wouwe, M. Dusselier, E. Vanleeuw and B. Sels, ChemSus–Chem, 9, 907 (2016).

    Article  CAS  Google Scholar 

  14. P. P. Upare, J. W. Yoon, D. W. Hwang, U.–H. Lee, Y. K. Hwang, D.–Y. Hong, J. C. Kim, J. H. Lee, S. K. Kwak, H. Shin, H. Kim and J.–S. Chang, Green Chem., 18, 5978 (2016).

    Article  CAS  Google Scholar 

  15. Y. Yamaguchi and T. Arimura, US Patent 5,502,215 (1996).

    Google Scholar 

  16. T. Tsukegi, T. Motoyama, Y. Shirai, H. Nishida and T. Endo, Polymer Degrad. Stabil., 92, 552 (2007).

    Article  CAS  Google Scholar 

  17. G. F. L. Koay, T.–G. Chuah, S. Zainal–Abidin, S. Ahmad and T. S. Y. Choong, Ind. Crops & Products, 34, 1135 (2011).

    Article  CAS  Google Scholar 

  18. T.–C. Chen and Y.–H. Ju, Ind. Eng. Chem. Res., 40, 3781 (2001).

    Article  CAS  Google Scholar 

  19. W. L. Xu, Y. B. Huang, J. H. Qian, O. Sha, and Y. Q. Wang, Sep. Purif. Technol., 41, 173 (2005).

    Article  CAS  Google Scholar 

  20. H. Ohara, H. Okuyama, M. Ogaito, Y. Fujii, T. Kawamoto, T. Kawabe and Y. Horibe, US Patent 6,313,319 B1 (2001).

    Google Scholar 

  21. L. Xiaoning, W. Rongqing, L. Ying and W. Jun, C. N. Patent 101,157,680 (2006).

    Google Scholar 

  22. Z. Chen, C. Xie, Z. Xu, Y. Wang, H. Zhao and H. Hao, J. Chem. Eng. Data, 58, 143 (2013).

    Article  CAS  Google Scholar 

  23. K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry and M. Stefaniak, Green Chem., 10, 31 (2008).

    Article  CAS  Google Scholar 

  24. C. D. C. Erbetta, R. J. Alves, J. M. Resende, R. F. S. Freitas and R. G. Sousa, J. Biomaterials Nanobiotechnol., 3, 208 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Won Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upare, P.P., Chang, JS., Hwang, I.T. et al. Integrated production of polymer-grade lactide from aqueous lactic acid by combination of heterogeneous catalysis and solvent crystallization with ethanol. Korean J. Chem. Eng. 36, 203–209 (2019). https://doi.org/10.1007/s11814-018-0205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0205-7

Keywords

Navigation