Skip to main content
Log in

The potential use of pulsed electric field to assist in polygodial extraction from Horopito (Pseudowintera colorata) leaves

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Horopito (Pseudowintera colorata) contains polygodial as an active compound that has many health beneficial properties. The potential of applying a continuous pulsed electric field (PEF) as a pretreatment step prior to solvent extraction of polygodial from Horopito leaves was studied. Horopito leaves suspended in water were subjected to PEF at electric field intensity ranging from 5 to 25 kV/cm and pulse frequencies from 200 to 800Hz. The interaction between electric field intensity and pulse frequency was found to have a significant role in extraction. Both electro-permeabilization and temperature increase from treatment caused some polygodial leaching from the leaves prior to solvent extraction. The study revealed that PEF at low electric field intensity and high frequency is the most effective way to achieve higher solvent extraction yield while minimizing the effect of leaching. The maximum improvement was obtained when PEF at 5 kV/cm and 800Hz for 348 μs were applied, giving a polygodial extraction yield of about 16.6% higher than that of non-PEF treated leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Brooker, R. C. Cambie and R. C. Cooper, New Zealand medicinal plants, Heinemann, Auckland (1987).

    Google Scholar 

  2. L. J. Metcalf, The cultivation of New Zealand trees & shrubs, Reed Methuen Publishers, Auckland (1987).

    Google Scholar 

  3. C. S. Barnes and J. W. Loder, J. Chem., 15, 322 (1962).

    CAS  Google Scholar 

  4. I. Kubo, Y. W. Lee, M. Petteei, F. Pilkiewicz and K. Nakanishi, J. Chem. Soc. Chem. Commun., 1013 (1976).

  5. R. F. McCallion, A. L. Cole, J. R. Walker, J. W. Blunt and M. H. Munro, Planta Med., 44, 134 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. J. Sahu, K. Jain, B. Jain and R. K. Sahu, Pharmacologyonline, 2, 1105 (2011).

    Google Scholar 

  7. S. H. Lee, J. R. Lee, C. S. Lunde and I. Kubo, Planta Med., 65, 204 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. N. B. Perry, L. M. Foster and S. D. Lorimer, Phytochemistry, 43, 1201 (1996).

    Article  CAS  Google Scholar 

  9. I. Kubo, K. i. Fujita, S. H. Lee and T. J. Ha, Phytother. Res., 19, 1013 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. G. Powell, J. Hardie and J. A. Pickett, Physiol. Entomol., 20, 141 (1995).

    Article  CAS  Google Scholar 

  11. P. J. Gerard, N. B. Perry, L. D. Ruf and L. M. Foster, Bull. Entomol. Res., 83, 547 (1993).

    Article  CAS  Google Scholar 

  12. S. D. Lorimer, N. B. Perry, L. M. Foster, E. J. Burgess, P. G. C. Douch, M. C. Hamilton, M. J. Donaghy and R. A. McGregor, J. Agric. Food Chem., 44, 2842 (1996).

    Article  CAS  Google Scholar 

  13. A. Tânia Maria de Almeida, R. Fabiane Lacerda, K. Helmut and Z. Carlos Leomar, Mem. Inst. Oswaldo Cruz, 96, 831 (2001).

    Article  Google Scholar 

  14. M. G. Derita, M. L. Leiva and S. A. Zacchino, J. Ethnopharmacol., 124, 377 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. M. G. Derita, S. J. Gattuso and S. A. Zacchino, Biochem. Syst. Ecol., 36, 55 (2008).

    Article  CAS  Google Scholar 

  16. K. A. Wayman, P. J. de Lange, L. Larsen, C. E. Sansom and N. B. Perry, Phytochemistry, 71, 766 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. D. Muñoz-Concha, H. Vogel, R. Yunes, I. Razmilic, L. Bresciani and A. Malheiros, Biochem. Syst. Ecol., 35, 434 (2007).

    Article  CAS  Google Scholar 

  18. C. Starkenmann, L. Luca, Y. Niclass, E. Praz and D. Roquet, J. Agric. Food Chem., 54, 3067 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. R. E. Corbett and P. K. Grant, J. Sci. Food Agric., 9, 733 (1958).

    Article  CAS  Google Scholar 

  20. J. Azmir, I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini and A. K. M. Omar, J. Food Eng., 117, 426 (2013).

    Article  CAS  Google Scholar 

  21. C. Chan, R. Yusoff, G. Ngoh and F. W. Kung, J. Chromatogr. A, 1218, 6213 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. J. Nadia, K. Shahbaz, M. Ismail and M. M. Farid, ACS Sustain. Chem. Eng., 6, 826 (2018).

    Article  CAS  Google Scholar 

  23. Forest Herbs Research Ltd., New Zealand Patent NZ520178A (2005).

  24. J. Just, T. B. Jordan, B. Paull, A. C. Bissember and J. A. Smith, Org. Biomol. Chem., 13, 11200 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. F. H. R. Ltd., New Zealand Patent, NZ520178A (2005).

    Google Scholar 

  26. M. M. Poojary, S. Roohinejad, F. J. Barba, M. Koubaa, E. Puértolas, A. R. Jambrak, R. Greiner and I. Oey, in Handbook of Electroporation, Miklavcic, D., Ed., Springer, Cham, 1 (2017).

    Google Scholar 

  27. S. Toepfl, A. Mathys, V. Heinz and D. Knorr, Food Rev. Int., 22, 405 (2006).

    Article  CAS  Google Scholar 

  28. F. J. Segovia, E. Luengo, J. J. Corral-Pérez, J. Raso and M. P. Almajano, Ind. Crop. Prod., 65, 390 (2015).

    Article  CAS  Google Scholar 

  29. M. Fincan, J. Food Eng., 162, 31 (2015).

    Article  CAS  Google Scholar 

  30. E. Puértolas, N. López, G. Saldaña, I. Álvarez and J. Raso, J. Food Eng., 98, 120 (2010).

    Article  CAS  Google Scholar 

  31. S. Jeyakomdan, D. S. Jayas and R. A. Holly, J. Food Prot., 62, 1088 (1999).

    Article  Google Scholar 

  32. K. V. Loginova, N. I. Lebovka and E. Vorobiev, J. Food Eng., 106, 127 (2011).

    Article  CAS  Google Scholar 

  33. E. Luengo, I. Álvarez and J. Raso, Innov. Food Sci. Emerg. Technol., 17, 79 (2013).

    Article  CAS  Google Scholar 

  34. X. Yu, O. Bals, N. Grimi and E. Vorobiev, Ind. Crop. Prod., 74, 309 (2015).

    Article  CAS  Google Scholar 

  35. A. Zderic and E. Zondervan, Chem. Eng. Res. Des., 109, 586 (2016).

    Article  CAS  Google Scholar 

  36. M. Goettel, C. Eing, C. Gusbeth, R. Straessner and W. Frey, Algal Res., 2, 401 (2013).

    Article  Google Scholar 

  37. Sukardi, S. Soeparman, B. D. Argo and Y. S. Irawan, J. Nat. Sci. Res., 3, 48 (2013).

    Google Scholar 

  38. K. Flisar, S. H. Meglic, J. Morelj, J. Golob and D. Miklavcic, Bioelectrochemistry, 100, 44 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. E. Puértolas and I. M. de Marañón, Food Chem., 167, 497 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. S. R. Alkhafaji and M. Farid, Innov. Food Sci. Emerg. Technol., 8, 205 (2007).

    Article  Google Scholar 

  41. D. Xue and M. M. Farid, Innov. Food Sci. Emerg. Technol., 29, 178 (2015).

    Article  CAS  Google Scholar 

  42. J. M. Aguilera, G. A. Escobar, J. M. Delvalle and R. Martin, Int. J. Food Sci. Technol., 22, 225 (1987).

    Article  Google Scholar 

  43. S. Maksimovic, J. Ivanovic and D. Skala, Procedia Eng., 42, 1767 (2012).

    Article  CAS  Google Scholar 

  44. C. Chan, R. Yusoff and G. Ngoh, Chem. Eng. Res. Des., 92, 1169 (2014).

    Article  CAS  Google Scholar 

  45. M. L. Ouzzar, W. Louaer, A. Zemane and A. Meniai, Chem. Eng. Trans., 43, 1129 (2015).

    Google Scholar 

  46. E. T. Akhihiero, B. V. Ayodele and G. E. Akpojotor, Af. J. Phys., 16, 105 (2013).

    Google Scholar 

  47. L. W. Youard, The function of secondary metabolites in the leaves of Pseudowintera colorata, University of Otago (2012).

    Google Scholar 

  48. N. Lebovka and E. Vorobiev, in Electrotechnologies for extraction from food plants and biomaterials, Vorobiev, E. and Lebovka, N., Eds., Springer-Verlag, New York, NY, 39 (2008).

    Google Scholar 

  49. H. Jäger, Process performance analysis of pulsed electric field (PEF) food applications, der Technischen Universität Berlin (2012).

    Google Scholar 

  50. K. El-Beghiti, Z. Rabhi and E. Vorobiev, J. Sci. Food Agric., 85, 213 (2005).

    Article  CAS  Google Scholar 

  51. N. P. Brunton and E. Luengo, in Handbook of Electroporation, Miklavcic, D., Ed., Springer, Cham, 1 (2017).

    Google Scholar 

  52. J. H. Harker, J. R. Backhurst and J. F. Richardson, Coulson and Richardson’s chemical engineering: (Particle technology and separation processes), Butterworth-Heinemann (2002).

    Google Scholar 

  53. M. A. Tütüncü and T. P. Labuza, J. Food Eng., 30, 433 (1996).

    Article  Google Scholar 

  54. S. Roohinejad, D. W. Everett and I. Oey, Int. J. Food Sci. Technol., 49, 2120 (2014).

    Article  CAS  Google Scholar 

  55. E. Luengo, J. M. Martínez, I. Álvarez and J. Raso, Ind. Crop. Prod., 84, 28 (2016).

    Article  CAS  Google Scholar 

  56. A. Meullemiestre, C. Breil, M. Abert-Vian and F. Chemat, Modern Techniques and Solvents for the Extraction of Microbial Oils, Springer International Publishing, Cham [u. a. ] (2015).

    Book  Google Scholar 

  57. S. Asavasanti, S. Ersus, W. Ristenpart, P. Stroeve and D. M. Barrett, J. Food Sci., 75, E443 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Farid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadia, J., Ismail, M., Shahbaz, K. et al. The potential use of pulsed electric field to assist in polygodial extraction from Horopito (Pseudowintera colorata) leaves. Korean J. Chem. Eng. 36, 272–280 (2019). https://doi.org/10.1007/s11814-018-0191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0191-9

Keywords

Navigation