Skip to main content
Log in

Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Proton-exchange membrane (PEM) fuel cells are one of the main candidates for propulsion systems of modern electric vehicles. However, appropriate water management is crucial to performance. Cell compression can affect the performance and water management of PEM fuel cells. Although the influence of cell compression on the transport of continuous water flow through the porous electrodes has been investigated, the influence of cell compression on the droplet dynamic behavior through these electrodes is not investigated thoroughly. Employing a pore-scale simulation method such as lattice Boltzmann method (LBM) is an excellent means for such investigation. In this study, LBM was applied to investigate the influence of compression of gas diffusion layer (GDL) on the removal of a water droplet from an electrode of a cell with interdigitated flow field. During removal process the droplet dynamic movement through five different GDLs (one without compression and the other four with four different levels of compression) was depicted and analyzed. The results reveal that the droplet experiences a faster removal process when the GDL is compressed. However, more increasing of compression does not result in a faster removal process, which indicates the existence of an optimum compression level for which the fastest removal process occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ehsani, Y. Gao and A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory and design, CRC Press, London (2012).

    Google Scholar 

  2. K. Hongthong, K. Pruksathorn, P. Piumsomboon and P. Sripakagorn, Korean J. Chem. Eng., 24, 612 (2007).

    Article  CAS  Google Scholar 

  3. T. Kim, H. Lee, W. Sim, J. Lee, S. Kim, T. Lim and K. Park, Korean J. Chem. Eng., 26, 1265 (2009).

    Article  CAS  Google Scholar 

  4. Fuel cell vehicles, https://doi.org/en.wikipedia.org/wiki/Fuel_cell, 2016 (accessed 3 January 2016).

  5. D. J. Moon, J. W. Ryu, S. D. Lee and B. S. Ahn, Korean J. Chem. Eng., 19, 921 (2002).

    Article  CAS  Google Scholar 

  6. B. Nakrumpai, K. Pruksathorn and P. Piumsomboon, Korean J. Chem. Eng., 23, 570 (2006).

    Article  CAS  Google Scholar 

  7. W. Chen and F. Jiang, Int. J. Hydrogen Energy, 41, 8550 (2016).

    Article  CAS  Google Scholar 

  8. I. S. Han, S. K. Park and C. B. Chung, Korean J. Chem. Eng., 33, 3121 (2016).

    Article  CAS  Google Scholar 

  9. S. Park and B. N. Popov, Korean J. Chem. Eng., 31, 1384 (2014).

    Article  CAS  Google Scholar 

  10. S. Bhlapibul and K. Pruksathorn, Korean J. Chem. Eng., 25, 1226 (2008).

    Article  CAS  Google Scholar 

  11. M. H. Shojaeefard, G. R. Molaeimanesh, M. Nazemian and M. R. Moqaddari, Int. J. Hydrogen Energy, 41, 20276 (2016).

    Article  CAS  Google Scholar 

  12. M. F. Serincan and U. Pasaogullari, J. Power Sources, 196, 1314 (2011).

    Article  CAS  Google Scholar 

  13. A. Mahmoudi, A. Ramiar and Q. Esmaili, Energy Convers. Manag., 110, 78 (2016).

    Article  CAS  Google Scholar 

  14. K. Tüber, D. Pócza and C. Hebling, J. Power Sources, 124, 403 (2003).

    Article  CAS  Google Scholar 

  15. M. Mortazavi and K. Tajiri, J. Power Sources, 245, 236 (2014).

    Article  CAS  Google Scholar 

  16. C. S. Lee and S. C. Yi, Korean J. Chem. Eng., 21, 1153 (2004).

    Article  CAS  Google Scholar 

  17. P. P. Mukherjee, C.-Y. Wang, V. P. Schulz, Q. Kang, J. Becker and A. Wiegmann, ECS. Trans., 25, 1485 (2009).

    Article  CAS  Google Scholar 

  18. Z. Shi, X. Wang and L. Guessous, J. Fuel Cell. Sci. Technol., 7, 021012 (2010).

    Article  CAS  Google Scholar 

  19. Y. Wang and K. S. Chen, J. Electrochem. Soc., 158, B1292 (2011).

    Google Scholar 

  20. P. Chippar, O. Kyeongmin, K. Kang and H. Ju, Int. J. Hydrogen Energy, 37, 6326 (2012).

    Article  CAS  Google Scholar 

  21. T. Tranter, A. Burns, D. Ingham and M. Pourkashanian, Int. J. Hydrogen Energy, 40, 652 (2015).

    Article  CAS  Google Scholar 

  22. J. H. Nam and M. Kaviany, Int. J. Heat. Mass Transf., 46, 4595 (2003).

    Article  CAS  Google Scholar 

  23. F. Zhang, X. Yang and C. Wang, J. Electrochem. Soc., 153, A225 (2006).

    Article  CAS  Google Scholar 

  24. S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).

    Article  Google Scholar 

  25. G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 32, 397 (2015).

    Article  CAS  Google Scholar 

  26. G. R. Molaeimanesh, H. S. Googarchin and A. Q. Moqaddam, Int. J. Hydrogen Energy, 41, 22221 (2016).

    Article  CAS  Google Scholar 

  27. G. R. Molaeimanesh and M. H. Akbari, Int. J. Hydrogen Energy, 39, 8401 (2014).

    Article  CAS  Google Scholar 

  28. G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 31, 598 (2014).

    Article  CAS  Google Scholar 

  29. L. Chen, H.-B. Luan, Y.-L. He and W.-Q. Tao, Int. J. Therm Sci., 51, 132 (2012).

    Article  CAS  Google Scholar 

  30. Y. B. Salah, Y. Tabe and T. Chikahisa, Energy Procedia, 28, 125 (2012).

    Article  CAS  Google Scholar 

  31. B. Han and H. Meng, J. Power Sources, 217, 268 (2012).

    Article  CAS  Google Scholar 

  32. B. Han, J. Yu and H. Meng, J. Power Sources, 202, 175 (2012).

    Article  CAS  Google Scholar 

  33. L. Hao and P. Cheng, J. Power Sources, 190, 435 (2009).

    Article  CAS  Google Scholar 

  34. P. L. Bhatnagar, E. P. Gross and M. Krook, Phys Rev., 94, 511 (1954).

    Article  CAS  Google Scholar 

  35. X. Shan and H. Chen, Phys Rev. E., 47, 1815 (1993).

    Article  CAS  Google Scholar 

  36. A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys. Rev. A., 43, 4320 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett., 75, 830 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. A. A. Mohamad, Lattice Boltzmann method: fundamentals and engineering applications with computer codes, Springer, New York (2011).

    Book  Google Scholar 

  39. M. C. Sukop and D. T. Thorne, Lattice Boltzmann modeling, an introduction for geoscientists and engineers, Springer, Heidelberg (2007).

    Google Scholar 

  40. P. Yuan and L. Schaefer, Phys. Fluids, 18, 042101 (2006).

    Article  CAS  Google Scholar 

  41. V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee and C.-Y. Wang, J. Electrochem. Soc., 154, B419 (2007).

    Google Scholar 

  42. K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann and J. Ohser, Comput. Mater. Sci., 38, 56 (2006).

    Article  Google Scholar 

  43. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).

    Article  CAS  Google Scholar 

  44. E. Kumbur, K. Sharp and M. Mench, J. Power Sources, 168, 356 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Molaeimanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaeimanesh, G.R., Shojaeefard, M.H. & Moqaddari, M.R. Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells. Korean J. Chem. Eng. 36, 136–145 (2019). https://doi.org/10.1007/s11814-018-0157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0157-y

Keywords

Navigation