Skip to main content
Log in

A comprehensive comparison among four different approaches for predicting the solubility of pharmaceutical solid compounds in supercritical carbon dioxide

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Supercritical technologies have been developed in the food, environmental, biochemical and pharmaceutical product processing during the recent decades. Obtaining accurate experimental solubilities of pharmaceutical compounds in supercritical carbon dioxide (SC-CO2) and their correlations are highly important and essential for the design of industrial operating units. In this study, the solubilities of six pharmaceutical compounds (Anti-HIV, Antiinflammatory and Anti-cancer) in SC-CO2 were correlated using four different models: cubic equation of state (EoS) model (SRK and modified-Pazuki EoSs), empirical and semi-empirical models (Chrastil, Mendez-Santiago-Teja, Spark et al. and Bian et al. models), regular solution model coupled with the Flory-Huggins equation, and an artificial neural network-based (ANN-based) model. In EoS calculations, twin-parametric van der Waals (vdW2) and Panagiotopoulos-Reid (mrPR) mixing rules were used for estimating the supercritical solution properties, with three different sets employed for obtaining critical and physicochemical properties of the solid compounds. To evaluate the capabilities of various approaches, a comprehensive comparison was carried out among the four models based on several statistical criteria, including AARD, Radj and F-value. Results of the analysis of variance (ANOVA) indicated that the ANN-based model provided the best results in terms of correlating the experimental solubility of the pharmaceutical compounds in SC-CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Tabaraki and A. Toulabi, Fluid Phase Equilib., 383, 108 (2014).

    Article  CAS  Google Scholar 

  2. A. Tabernero, E. M. M. del Valle and M. Á. Galán, J. Supercrit. Fluids, 52, 161 (2010).

    Article  CAS  Google Scholar 

  3. J. Lyu, H. Yang, W. Ling, L. Nie, G. Yue, R. Li, Y. Chen and S. Wang, Frontiers in Energy (2017). https://doi. org/10. 1007/s11708–017–0512–4.

    Google Scholar 

  4. G. Sodeifian, S. A. Sajadian and N. S. Ardestani, J. Supercrit. Fluids, 116, 46 (2016).

    Article  CAS  Google Scholar 

  5. G. Sodeifian, S. A. Sajadian and N. S. Ardestani, J. Supercrit. Fluids, 119, 139 (2017).

    Article  CAS  Google Scholar 

  6. G. Sodeifian, S. A. Sajadian and S. Daneshyan, J. Supercrit. Fluids, 140, 72 (2018).

    Article  CAS  Google Scholar 

  7. G. Sodeifian and S. A. Sajadian, J. Supercrit. Fluids, 133, 239 (2018).

    Article  CAS  Google Scholar 

  8. G. Brunner, J. Supercrit. Fluids, 96, 11 (2015).

    Article  CAS  Google Scholar 

  9. E. Kiran, J. Supercrit. Fluids, 110, 126 (2016).

    Article  CAS  Google Scholar 

  10. J. W. Tom and P. G. Debenedetti, J. Aerosol Sci., 22, 555 (1991).

    Article  CAS  Google Scholar 

  11. S.–D. Yeo and E. Kiran, J. Supercrit. Fluids, 34, 287 (2005).

    Article  CAS  Google Scholar 

  12. H. S. Yeoh, G. H. Chong, N. Mohd Azahan, R. Abdul Rahman and T. S. Y. Choong, Eng. J., 17, 67 (2013).

    Article  Google Scholar 

  13. G. Sodeifian, N. S. Ardestani, S. A. Sajadian and H. S. Panah, Fluid Phase Equilib., 458, 102 (2018).

    Article  CAS  Google Scholar 

  14. G. Sodeifian, S. A. Sajadian and N. S. Ardestani, J. Supercrit. Fluids, 107, 137 (2016).

    Article  CAS  Google Scholar 

  15. G. Sodeifian, S. A. Sajadian and N. S. Ardestani, J. Supercrit. Fluids, 127, 146 (2017).

    Article  CAS  Google Scholar 

  16. Z. Fang, Rapid production of micro–and nano–particles using supercritical water, Springer Science & Business Media (2010).

    Book  Google Scholar 

  17. G. Sodeifian, N. S. Ardestani, S. A. Sajadian and S. Ghorbandoost, J. Supercrit. Fluids, 114, 55 (2016).

    Article  CAS  Google Scholar 

  18. J. R. Williams and T. Clifford, Supercritical fluid methods and protocols, Springer Science & Business Media (2000).

    Book  Google Scholar 

  19. G. Sodeifian, S. Ghorbandoost, S. A. Sajadian and N. S. Ardestani, J. Supercrit. Fluids, 110, 265 (2016).

    Article  CAS  Google Scholar 

  20. G. Sodeifian and S. A. Sajadian, J. Supercrit. Fluids, 121, 52 (2017).

    Article  CAS  Google Scholar 

  21. P. Coimbra, C. Duarte and H. De Sousa, Fluid Phase Equilib., 239, 188 (2006).

    Article  CAS  Google Scholar 

  22. J.–S. Cheng, M. Tang and Y.–P. Chen, Fluid Phase Equilib., 194, 483 (2002).

    Article  Google Scholar 

  23. C.–Y. Huang, L.–S. Lee and C.–S. Su, J. Taiwan Inst. Chem. Engineers, 44, 349 (2013).

    Article  CAS  Google Scholar 

  24. D.–Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  25. G. Soave, Fluid Phase Equilib., 84, 339 (1993).

    Article  CAS  Google Scholar 

  26. J. O. Valderrama, J. Chem. Eng. Japan, 23, 87 (1990).

    Article  CAS  Google Scholar 

  27. A. Dashtizadeh, G. Pazuki, V. Taghikhani and C. Ghotbi, Fluid Phase Equilib., 242, 19 (2006).

    Article  CAS  Google Scholar 

  28. J. Chrastil, J. Phys. Chem., 86, 3016 (1982).

    Article  CAS  Google Scholar 

  29. J. M. Del Valle and J. M. Aguilera, Ind. Eng. Chem. Res., 27, 1551 (1988).

    Article  CAS  Google Scholar 

  30. M. Gordillo, M. Blanco, A. Molero and E. M. De La Ossa, J. Supercrit. Fluids, 15, 183 (1999).

    Article  CAS  Google Scholar 

  31. A. Jouyban, H. Chan and N. Foster, J. Supercrit. Fluids, 24, 19 (2002).

    Article  CAS  Google Scholar 

  32. A. Jouyban, M. Rehman, B. Y. Shekunov, H. K. Chan, B. J. Clark and P. York, J. Pharm. Sci., 91, 1287 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. X.–Q. Bian, Q. Zhang, Z.–M. Du, J. Chen and J.–N. Jaubert, Fluid Phase Equilib., 411, 74 (2016).

    Article  CAS  Google Scholar 

  34. J. Méndez–Santiago and A. S. Teja, Fluid Phase Equilib., 158, 501 (1999).

    Article  Google Scholar 

  35. D. L. Sparks, L. A. Estévez, R. Hernandez, K. Barlow and T. French, J. Chem. Eng. Data, 53, 407 (2008).

    Article  CAS  Google Scholar 

  36. C.–S. Su and Y.–P. Chen, Fluid Phase Equilib., 254, 167 (2007).

    Article  CAS  Google Scholar 

  37. C.–S. Su and Y.–P. Chen, J. Supercrit. Fluids, 43, 438 (2008).

    Article  CAS  Google Scholar 

  38. A. Eslamimanesh, F. Gharagheizi, A. H. Mohammadi and D. Richon, Chem. Eng. Sci., 66, 3039 (2011).

    Article  CAS  Google Scholar 

  39. F. Gharagheizi, A. Eslamimanesh, A. H. Mohammadi and D. Richon, Ind. Eng. Chem. Res., 50, 221 (2010).

    Article  CAS  Google Scholar 

  40. B. Mehdizadeh and K. Movagharnejad, Fluid Phase Equilib., 303, 40 (2011).

    Article  CAS  Google Scholar 

  41. B. Vaferi, M. Karimi, M. Azizi and H. Esmaeili, J. Supercrit. Fluids, 77, 44 (2013).

    Article  CAS  Google Scholar 

  42. Y. Bakhbakhi, Mathematical and Computer Modelling, 55, 1932 (2012).

    Article  Google Scholar 

  43. G. Sodeifian, S. A. Sajadian and F. Razmimanesh, Fluid Phase Equilib., 450, 149 (2017).

    Article  CAS  Google Scholar 

  44. G. Sodeifian, F. Razmimanesh, S. A. Sajadian and H. S. Panah, Fluid Phase Equilib., 472, 147 (2018).

    Article  CAS  Google Scholar 

  45. M. Ardjmand, M. Mirzajanzadeh and F. Zabihi, Chinese J. Chem. Eng., 22, 549 (2014).

    Article  CAS  Google Scholar 

  46. S. H. Yalkowsky, Ind. Eng. Chem. Fundam. 18, 108 (1979).

    Article  CAS  Google Scholar 

  47. T. Pang and E. McLaughlin, Ind. Eng. Chem. Process Design Development, 24, 1027 (1985).

    Article  CAS  Google Scholar 

  48. F.–H. Huang, M.–H. Li, L. L. Lee, K. E. Starling and F. T. Chung, J. Chem. Eng. Japan, 18, 490 (1985).

    Article  CAS  Google Scholar 

  49. R. F. Fedors, Polym. Eng. Sci., 14, 147 (1974).

    Article  CAS  Google Scholar 

  50. S. Ghoreishi and E. Heidari, J. Supercrit. Fluids, 74, 128 (2013).

    Article  CAS  Google Scholar 

  51. M. Lashkarbolooki, B. Vaferi and M. Rahimpour, Fluid Phase Equilib., 308, 35 (2011).

    Article  CAS  Google Scholar 

  52. G. Sodeifian, S. A. Sajadian and N. S. Ardestani, J. Taiwan Inst. Chem. Engineers, 60, 165 (2016).

    Article  CAS  Google Scholar 

  53. C. Garlapati and G. Madras, Thermochim. Acta, 500, 123 (2010).

    Article  CAS  Google Scholar 

  54. G. Sodeifian and A. Haghtalab, Appl. Rheol., 14, 180 (2004).

    CAS  Google Scholar 

  55. A. Haghtalab and G. Sodeifian, Iran. Polym. J., 11, 107 (2002).

    CAS  Google Scholar 

  56. D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons (2008).

    Google Scholar 

  57. Y. Adachi and B. C.–Y. Lu, Fluid Phase Equilib., 14, 147 (1983).

    Article  CAS  Google Scholar 

  58. D. Suleiman, L. A. Estévez, J. C. Pulido, J. E. García and C. Mojica, J. Chem. Eng. Data, 50, 1234 (2005).

    Article  CAS  Google Scholar 

  59. R. Ch and G. Madras, Thermochim. Acta, 507, 99 (2010).

    Article  CAS  Google Scholar 

  60. A. Z. Hezave, S. Aftab and F. Esmaeilzadeh, J. Supercrit. Fluids, 68, 39 (2012).

    Article  CAS  Google Scholar 

  61. Y. Yamini, M. Hojjati, P. Kalantarian, M. Moradi, A. Esrafili and A. Vatanara, Thermochim. Acta, 549, 95 (2012).

    Article  CAS  Google Scholar 

  62. B. E. Poling, J. M. Prausnitz, O. C. John Paul and R. C. Reid, The properties of gases and liquids, McGraw–Hill New York (2001).

    Google Scholar 

  63. R. Curl and K. Pitzer, Ind. Eng. Chem., 50, 265 (1958).

    Article  CAS  Google Scholar 

  64. B. I. Lee and M. G. Kesler, AIChE J., 21, 510 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Sodeifian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodeifian, G., Sajadian, S.A., Razmimanesh, F. et al. A comprehensive comparison among four different approaches for predicting the solubility of pharmaceutical solid compounds in supercritical carbon dioxide. Korean J. Chem. Eng. 35, 2097–2116 (2018). https://doi.org/10.1007/s11814-018-0125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0125-6

Keywords

Navigation