Skip to main content
Log in

Analysis of molar flux and current density in the electrodialytic separation of sulfuric acid from spent liquor using an anion exchange membrane

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Separation of sulfuric acid from a dilute solution involved a plate and frame type electrodialysis unit using a commercial anion exchange membrane. Experiments were conducted in batch with catholyte concentrations ranging from 1 to 5 wt%. Effect of applied current density, initial catholyte concentration and initial concentration difference of catholyte and anolyte on the molar flux was studied extensively. The maximum molar flux was estimated to be 10.52×10-8 mol cm-2s-1 at 4.45 wt% catholyte concentration and applied current density of 30 mA cm-2. Current efficiencies were observed to be 75 to 85% at lower current density, which rose to more than 100% at 20 and 30mA cm-2, at equal initial concentration of catholyte and anolyte. Diffusive flux and flux due to membrane potential contributed very less compared to total flux in presence of applied electric current. An equation was developed to predict the practical molar fluxes, which fitted satisfactorily with minor standard deviation. Pristine and used membrane specimens were characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Agrawal and K. K. Sahu, J. Hazard. Mater., 171, 61 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. A. Lopez-Delgado, F. J. Alguacil and F. A. Lopez, Hydrometallurgy, 45, 97 (1997).

    Article  CAS  Google Scholar 

  3. T. Ozdemir, C. Oztin and N. S. Kincal, Chem. Eng. Comm., 193, 548 (2006).

    Article  CAS  Google Scholar 

  4. U. Kerney, Res. Conserv. Recycl., 10, 145 (1994).

    Article  Google Scholar 

  5. V. Nenov, N. Dimitrova and I. Dobrevsky, Hydrometallurgy, 44, 43 (1997).

    Article  CAS  Google Scholar 

  6. R.M. Hudson, ASM International, Material Park, Ohio, ASM Handbook, 3, 67 (1994).

    Google Scholar 

  7. U. K. Kesieme, H. Aral, M. Duke, N. Milne and C. G. Cheng, Hydrometallurgy, 138, 14 (2013).

    Article  CAS  Google Scholar 

  8. K. Nath, Membrane separation processes, PHI, New Delhi, 233 (2017).

    Google Scholar 

  9. M.A. S. Rodrigues, A. M. Bernardes and J. Z. Ferreira, Conference: EPD Congress, Minerals, Metals and Materials Society/AIME, 184 Thorn Hill Road, Warrendale, PA 15086–7528, USA:659–672 (1999).

    Google Scholar 

  10. L. Cifuentes, G. Crisostomo, J. P. Ibanez, J. M. Casas, F. Alvarez and G. Cifuentes, J. Membr. Sci., 207, 1 (2002).

    Article  CAS  Google Scholar 

  11. J. Winiewski, G. Wigniewska and T. Winnicki, Desalination, 169, 11 (2004).

    Article  CAS  Google Scholar 

  12. M.C. Martí-Calatayud, D. C. Buzzi, M. Garcia-Gabaldon, E. Ortega, A. M. Bernardes, J. A. S. Tenori and V. Perez-Herranz, Desalination, 343, 120 (2014).

    Article  CAS  Google Scholar 

  13. M.C. Martí-Calatayud, M. García-Gabaldon and V. Perez-Herranz, J Membr. Sci., 443, 181 (2013).

    Article  CAS  Google Scholar 

  14. D.C. Buzzi, L. S. Viegas, M. A. S. Rodrigues, A. M. Bernardes and J.A. S. Tenorio, Minerals Eng., 40, 82 (2013).

    Article  CAS  Google Scholar 

  15. H. Jaroszek, W. Mikolajczak, M. Nowak and B. Pisarska, Desalination Water Treatment, 64, 223 (2017).

    Article  CAS  Google Scholar 

  16. G. Pourcelly, I. Tugas and C. Gavach, J. Membr. Sci., 97, 99 (1994).

    Article  CAS  Google Scholar 

  17. A.T. Cherif, C. Gavach, T. Cohen, P. Dagard and L. Albert, Hydrometallurgy, 21, 191 (1988).

    Article  CAS  Google Scholar 

  18. K. Urano, T. Ase and Y. Naito, Desalination, 51, 213 (1984).

    Article  CAS  Google Scholar 

  19. A.T. Cherif and C. Gavach, J. Electroanal. Chem., 265, 143 (1989).

    Article  CAS  Google Scholar 

  20. S. Koter and M. Kultys, J. Membr. Sci., 318, 467 (2008).

    Article  CAS  Google Scholar 

  21. Y. Lorrain, G. Pourcelly and C. Gavach, J. Membr. Sci., 110, 181 (1996).

    Article  CAS  Google Scholar 

  22. Y. Lorrain, G. Pourcelly and C. Gavach, Desalination, 109, 231 (1997).

    Article  CAS  Google Scholar 

  23. D. J. Lewis and F. L. Tye, J. Appl. Chem., 9, 279 (1959).

    Article  CAS  Google Scholar 

  24. M.W. Verbrugge and R. F. Hill, J. Electrochem. Soc., 137(4), 1131 (1990).

    Article  CAS  Google Scholar 

  25. R. Audinosa, A. Nassr-allah, J.R. Alvarezb, J. L. Andresb and R. Alvarezb, J. Membr. Sci., 76, 147 (1993).

    Article  Google Scholar 

  26. G. S. Luo, S. Pan and J.G. Liu, Desalination, 150, 227 (2002).

    Article  CAS  Google Scholar 

  27. N. Kanavova and L. Machuca, Periodica Polytechnica, Chem. Eng., 58(2), 25 (2014).

    Article  Google Scholar 

  28. E.G. Akgemci, M. Ersoz and T. Atalay, J. Sep. Sci. Technol., 39(1), 165 (2004).

    Article  CAS  Google Scholar 

  29. M.M. Nasef and H. Saidi, J. Membr. Sci., 216, 27 (2003).

    Article  CAS  Google Scholar 

  30. M. Bartholin, Makromol. Chem., 182, 2075 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, B., Nath, K. Analysis of molar flux and current density in the electrodialytic separation of sulfuric acid from spent liquor using an anion exchange membrane. Korean J. Chem. Eng. 35, 1878–1888 (2018). https://doi.org/10.1007/s11814-018-0091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0091-z

Keywords

Navigation