Skip to main content
Log in

Numerical study on particle deposition in rough channels with large-scale irregular roughness

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We studied particle deposition in rough channels, using the W-M fractal function to characterize a large-scale irregular surface with a root-mean-square roughness of 0.5mm. The flow was numerically investigated by Reynolds stress model, and the particles were tracked by a Lagrangian particle model. An analysis of the flow field in a rough channel shows that the roughness enhances the max flow velocity and the pressure drop in the channel. It induces several eddies in the concave of the rough surface. We also compared particle deposition in a rough channel with particle deposition in a smooth channel. This comparison shows that the roughness significantly enhances the particle deposition of small particles, but the enhancement decreases with the increase of particle size. Moreover, the particle deposition ratio decreases with increasing flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lecrivain, L. Barry and U. Hampel, Powder Technol., 258, 134 (2014).

    Article  CAS  Google Scholar 

  2. H. Feng, C. Wang and Y. Huang, Korean J. Chem. Eng., 34, 2832 (2017).

    Article  CAS  Google Scholar 

  3. A. C. K. Lai, M. A. Byrne and A. J. H. Goddard, J. Aerosol Sci., 32, 121 (2001).

    Article  CAS  Google Scholar 

  4. M. Sommerfeld and J. Kussin, Powder Technol., 142, 180 (2004).

    Article  CAS  Google Scholar 

  5. L. W. B. Browne, Atmospheric Environment (1967), 8, 801 (1974).

    Article  Google Scholar 

  6. M. S. El-Shobokshy and I. A. Ismail, Atmospheric Environment (1967), 14, 297 (1980).

    Article  Google Scholar 

  7. N. B. Wood, J. Aerosol Sci., 12, 275 (1981).

    Article  CAS  Google Scholar 

  8. M. S. El-Shobokshy, Atmos. Environ., 17, 639 (1983).

    Article  Google Scholar 

  9. J. Kussin and M. Sommerfeld, Exp. Fluids, 33, 143 (2002).

    Article  CAS  Google Scholar 

  10. Q. Chen, Build. Environ., 44, 848 (2009).

    Article  Google Scholar 

  11. H. Jiang, L. Lu and K. Sun, Build. Environ., 45, 1184 (2010).

    Article  Google Scholar 

  12. K. Sun, L. Lu and H. Jiang, Build. Environ., 46, 1251 (2011).

    Article  Google Scholar 

  13. S. Andarwa and H. B. Tabrizi, Korean J. Chem. Eng., 34, 1319 (2017).

    Article  CAS  Google Scholar 

  14. M. De Marchis, B. Milici, G. Sardina and E. Napoli, Int. J. Multiphase Flow, 78, 117 (2016).

    Article  CAS  Google Scholar 

  15. B. Milici and M. De Marchis, Int. J. Heat Fluid Flow, 60, 1 (2016).

    Article  Google Scholar 

  16. J. Yao and M. Fairweather, Chem. Eng. Sci., 84, 781 (2012).

    Article  CAS  Google Scholar 

  17. G. Lecrivain, D.-M. Sevan, B. Thomas and U. Hampel, Adv. Powder Technol., 25, 310 (2014).

    Article  Google Scholar 

  18. L. Tian and G. Ahmadi, J. Aerosol Sci., 38, 377 (2007).

    Article  CAS  Google Scholar 

  19. S. Laín, M. Sommerfeld and J. Kussin, Int. J. Heat Fluid Flow, 23, 647 (2002).

    Article  Google Scholar 

  20. H. Lu and L. Lu, Build. Environ., 85, 61 (2015).

    Article  Google Scholar 

  21. H. Lu and L. Lu, Build. Environ., 92, 317 (2015).

    Article  Google Scholar 

  22. H. Lu and L. Lu, Build. Environ., 94, 43 (2015).

    Article  Google Scholar 

  23. H. Lu and L. Lu, Appl. Therm. Eng., 93, 697 (2016).

    Article  Google Scholar 

  24. B. B. Mandelbrot, Fractals: Form, chance and dimension, W.H. Freeman & Co., San Francisco (1977).

    Google Scholar 

  25. Y. Chen, P. Fu, C. Zhang and M. Shi, Int. J. Heat Fluid Flow, 31, 622 (2010).

    Article  Google Scholar 

  26. C. Zhang, Z. Deng and Y. Chen, Int. J. Heat Mass Transfer, 70, 322 (2014).

    Article  Google Scholar 

  27. Y. Chen, C. Zhang, M. Shi and G. P. Peterson, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 80, 026301 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Chen, C. Zhang, M. Shi and G. P. Peterson, Appl. Phys. Lett., 97, 084101 (2010).

    Article  CAS  Google Scholar 

  29. L. Guo, H. Xu and L. Gong, Appl. Therm. Eng., 84, 399 (2015).

    Article  Google Scholar 

  30. F. F. Ling, Wear, 136, 141 (1990).

    Article  Google Scholar 

  31. A. Majumdar and C. L. Tien, Wear, 136, 313 (1990).

    Article  Google Scholar 

  32. B. E. Launder, G. J. Reece and W. Rodi, J. Fluid Mech., 68, 537 (1975).

    Article  Google Scholar 

  33. B. E. Launder and D. B. Spalding, Lectures in mathematical models of turbulence, Academic Press, London (1972).

    Google Scholar 

  34. W. C. Hinds, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York (1984).

    Google Scholar 

  35. J. Kim, P. Moin and R. Moser, J. Fluid Mech., 177, 133 (1987).

    Article  CAS  Google Scholar 

  36. C. F. Colebrook and C. M. White, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 161, 367 (1937).

    Article  Google Scholar 

  37. A. Guha, J. Aerosol Sci., 28, 1517 (1997).

    Article  CAS  Google Scholar 

  38. H. Liu and L. Zhang, Appl. Therm. Eng., 31, 3402 (2011).

    Article  Google Scholar 

  39. H. Ounis and G. Ahmadi, J. Fluids Eng., 112, 114 (1990).

    Article  CAS  Google Scholar 

  40. W. Kvasnak, G. Ahmadi, R. Bayer and M. Gaynes, J. Aerosol Sci., 24, 795 (1993).

    Article  CAS  Google Scholar 

  41. M. R. Sippola and W. W. Nazaroff, Aerosol Sci. Technol., 38, 914 (2004).

    Article  CAS  Google Scholar 

  42. Z. Zhang and Q. Chen, Atmos. Environ., 43, 319 (2009).

    Article  CAS  Google Scholar 

  43. N. Gao, J. Niu, Q. He, T. Zhu and J. Wu, Build. Environ., 48, 206 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Wang, X. Numerical study on particle deposition in rough channels with large-scale irregular roughness. Korean J. Chem. Eng. 35, 1517–1524 (2018). https://doi.org/10.1007/s11814-018-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0063-3

Keywords

Navigation