Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 7, pp 1517–1524 | Cite as

Numerical study on particle deposition in rough channels with large-scale irregular roughness

  • Wenpeng Hong
  • Xin Wang
Materials (Organic, Inorganic, Electronic, Thin Films)
  • 40 Downloads

Abstract

We studied particle deposition in rough channels, using the W-M fractal function to characterize a large-scale irregular surface with a root-mean-square roughness of 0.5mm. The flow was numerically investigated by Reynolds stress model, and the particles were tracked by a Lagrangian particle model. An analysis of the flow field in a rough channel shows that the roughness enhances the max flow velocity and the pressure drop in the channel. It induces several eddies in the concave of the rough surface. We also compared particle deposition in a rough channel with particle deposition in a smooth channel. This comparison shows that the roughness significantly enhances the particle deposition of small particles, but the enhancement decreases with the increase of particle size. Moreover, the particle deposition ratio decreases with increasing flow velocity.

Keywords

Particle Deposition Rough Channel W-M Fractal Function RSM Model CFD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lecrivain, L. Barry and U. Hampel, Powder Technol., 258, 134 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Feng, C. Wang and Y. Huang, Korean J. Chem. Eng., 34, 2832 (2017).CrossRefGoogle Scholar
  3. 3.
    A. C. K. Lai, M. A. Byrne and A. J. H. Goddard, J. Aerosol Sci., 32, 121 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Sommerfeld and J. Kussin, Powder Technol., 142, 180 (2004).CrossRefGoogle Scholar
  5. 5.
    L. W. B. Browne, Atmospheric Environment (1967), 8, 801 (1974).CrossRefGoogle Scholar
  6. 6.
    M. S. El-Shobokshy and I. A. Ismail, Atmospheric Environment (1967), 14, 297 (1980).CrossRefGoogle Scholar
  7. 7.
    N. B. Wood, J. Aerosol Sci., 12, 275 (1981).CrossRefGoogle Scholar
  8. 8.
    M. S. El-Shobokshy, Atmos. Environ., 17, 639 (1983).CrossRefGoogle Scholar
  9. 9.
    J. Kussin and M. Sommerfeld, Exp. Fluids, 33, 143 (2002).CrossRefGoogle Scholar
  10. 10.
    Q. Chen, Build. Environ., 44, 848 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Jiang, L. Lu and K. Sun, Build. Environ., 45, 1184 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Sun, L. Lu and H. Jiang, Build. Environ., 46, 1251 (2011).CrossRefGoogle Scholar
  13. 13.
    S. Andarwa and H. B. Tabrizi, Korean J. Chem. Eng., 34, 1319 (2017).CrossRefGoogle Scholar
  14. 14.
    M. De Marchis, B. Milici, G. Sardina and E. Napoli, Int. J. Multiphase Flow, 78, 117 (2016).CrossRefGoogle Scholar
  15. 15.
    B. Milici and M. De Marchis, Int. J. Heat Fluid Flow, 60, 1 (2016).CrossRefGoogle Scholar
  16. 16.
    J. Yao and M. Fairweather, Chem. Eng. Sci., 84, 781 (2012).CrossRefGoogle Scholar
  17. 17.
    G. Lecrivain, D.-M. Sevan, B. Thomas and U. Hampel, Adv. Powder Technol., 25, 310 (2014).CrossRefGoogle Scholar
  18. 18.
    L. Tian and G. Ahmadi, J. Aerosol Sci., 38, 377 (2007).CrossRefGoogle Scholar
  19. 19.
    S. Laín, M. Sommerfeld and J. Kussin, Int. J. Heat Fluid Flow, 23, 647 (2002).CrossRefGoogle Scholar
  20. 20.
    H. Lu and L. Lu, Build. Environ., 85, 61 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Lu and L. Lu, Build. Environ., 92, 317 (2015).CrossRefGoogle Scholar
  22. 22.
    H. Lu and L. Lu, Build. Environ., 94, 43 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Lu and L. Lu, Appl. Therm. Eng., 93, 697 (2016).CrossRefGoogle Scholar
  24. 24.
    B. B. Mandelbrot, Fractals: Form, chance and dimension, W.H. Freeman & Co., San Francisco (1977).Google Scholar
  25. 25.
    Y. Chen, P. Fu, C. Zhang and M. Shi, Int. J. Heat Fluid Flow, 31, 622 (2010).CrossRefGoogle Scholar
  26. 26.
    C. Zhang, Z. Deng and Y. Chen, Int. J. Heat Mass Transfer, 70, 322 (2014).CrossRefGoogle Scholar
  27. 27.
    Y. Chen, C. Zhang, M. Shi and G. P. Peterson, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 80, 026301 (2009).CrossRefGoogle Scholar
  28. 28.
    Y. Chen, C. Zhang, M. Shi and G. P. Peterson, Appl. Phys. Lett., 97, 084101 (2010).CrossRefGoogle Scholar
  29. 29.
    L. Guo, H. Xu and L. Gong, Appl. Therm. Eng., 84, 399 (2015).CrossRefGoogle Scholar
  30. 30.
    F. F. Ling, Wear, 136, 141 (1990).CrossRefGoogle Scholar
  31. 31.
    A. Majumdar and C. L. Tien, Wear, 136, 313 (1990).CrossRefGoogle Scholar
  32. 32.
    B. E. Launder, G. J. Reece and W. Rodi, J. Fluid Mech., 68, 537 (1975).CrossRefGoogle Scholar
  33. 33.
    B. E. Launder and D. B. Spalding, Lectures in mathematical models of turbulence, Academic Press, London (1972).Google Scholar
  34. 34.
    W. C. Hinds, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York (1984).Google Scholar
  35. 35.
    J. Kim, P. Moin and R. Moser, J. Fluid Mech., 177, 133 (1987).CrossRefGoogle Scholar
  36. 36.
    C. F. Colebrook and C. M. White, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 161, 367 (1937).CrossRefGoogle Scholar
  37. 37.
    A. Guha, J. Aerosol Sci., 28, 1517 (1997).CrossRefGoogle Scholar
  38. 38.
    H. Liu and L. Zhang, Appl. Therm. Eng., 31, 3402 (2011).CrossRefGoogle Scholar
  39. 39.
    H. Ounis and G. Ahmadi, J. Fluids Eng., 112, 114 (1990).CrossRefGoogle Scholar
  40. 40.
    W. Kvasnak, G. Ahmadi, R. Bayer and M. Gaynes, J. Aerosol Sci., 24, 795 (1993).CrossRefGoogle Scholar
  41. 41.
    M. R. Sippola and W. W. Nazaroff, Aerosol Sci. Technol., 38, 914 (2004).CrossRefGoogle Scholar
  42. 42.
    Z. Zhang and Q. Chen, Atmos. Environ., 43, 319 (2009).CrossRefGoogle Scholar
  43. 43.
    N. Gao, J. Niu, Q. He, T. Zhu and J. Wu, Build. Environ., 48, 206 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringNortheast Electric Power UniversityJilinChina

Personalised recommendations