Korean Journal of Chemical Engineering

, Volume 35, Issue 7, pp 1532–1541 | Cite as

Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol

  • Noor Nazihah Bahrudin
  • Mohd Asri Nawi
Materials (Organic, Inorganic, Electronic, Thin Films)


Titanium dioxide (TiO2) and powdered activated carbon (PAC) were fabricated via a layer by layer arrangement on a glass plate using a dip-coating technique for the photocatalytic-adsorptive removal of phenol. Thinner TiO2 layer coated on PAC sub-layer has larger surface area and better phenol removal than the thicker TiO2 layer. The system obeyed the Langmuir isotherm model, which exhibited a homogeneous and monolayer adsorption with a maximum capacity of 27.8 mg g-1. The intra-particle diffusion was the rate-limiting step as the linear plot crossed the origin, while the adsorption was unfavorable at elevated temperature. Under light irradiation, the TiO2/PAC system removed phenol two-times more effectively than the TiO2 monolayer due to the synergistic effect of photocatalysis by TiO2 top layer and adsorption by PAC sub-layer. The COD removal of phenol was rapid for 10mg L-1 of concentration and under solar light irradiation. It was shown that the PAC sub-layer plays a significant role in the total removal of phenol by providing the adsorption sites and slowing down the recombination rate of charge carriers to improve the TiO2 photocatalytic oxidation performance.


Layer by Layer Monolayer Adsorption Photocatalytic Oxidation Powdered Activated Carbon Synergistic Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Saravanan, K. Pakshirajan and P. Saha, J. Hydro-environ. Res., 3, 45 (2009).CrossRefGoogle Scholar
  2. 2.
    V. Duma, K. Popp, M. Kung, H. Zhou, S. Nguyen, S. Ohyama, H. Kung and C. Marshall, Chem. Eng. J., 99, 227 (2004).CrossRefGoogle Scholar
  3. 3.
    Z. Guo, R. Ma and G. Li, Chem. Eng. J., 119, 55 (2006).CrossRefGoogle Scholar
  4. 4.
    I. Fierascu, S. M. Avramescu, I. Petreanu, A. Marinoiu, A. Soare, A. Nica and R. C. Fierascu, React. Kinet. Mech. Cat., 122, 155 (2017).CrossRefGoogle Scholar
  5. 5.
    P. Girods, A. Dufour, V. Fierro, Y. Rogaume, C. Rogaume, A. Zoulalian and A. Celzard, J. Hazard. Mater., 166, 491 (2009).CrossRefPubMedGoogle Scholar
  6. 6.
    H. Mahadevan, V. V. Dev, K. A. Krishnan, A. Abraham and O. Ershana, Environ. Technol. Innovation, 9, 1 (2018).CrossRefGoogle Scholar
  7. 7.
    P. Baldrick, Regul. Toxicol. Pharm., 56, 290 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Saran, G. Manjari, P. Arunkumar and S. P. Devipriya, Korean J. Chem. Eng., 34, 2984 (2017).CrossRefGoogle Scholar
  9. 9.
    H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He and Y. He, Water Res., 79, 128 (2015).CrossRefPubMedGoogle Scholar
  10. 10.
    M. Farzadkia, Y. Dadban Shahamat, S. Nasseri, A. H. Mahvi, M. Gholami and A. Shahryari, J. Eng., 2014, 10 (2014).CrossRefGoogle Scholar
  11. 11.
    D. Dubber and N. F. Gray, J. Environ. Sci. Health, Part A, 45, 1595 (2010).CrossRefGoogle Scholar
  12. 12.
    H. A. Rangkooy, M. N. Pour and B. F. Dehaghi, Korean J. Chem. Eng., 34(12), 3142 (2017).CrossRefGoogle Scholar
  13. 13.
    R. R. Kalantary, Y. Dadban Shahamat, M. Farzadkia, A. Esrafili and H. Asgharnia, Desalin. Water Treat., 55, 555 (2015).CrossRefGoogle Scholar
  14. 14.
    P. N. Omo-Okoro, A. P. Daso and J. O. Okonkwo, Environ. Technol. Innovation, 9, 100 (2018).CrossRefGoogle Scholar
  15. 15.
    C. Sriwong, S. Wongnawa and O. Patarapaiboolchai, J. Environ. Sci., 24, 464 (2012).CrossRefGoogle Scholar
  16. 16.
    C. Andriantsiferana, E. F. Mohamed and H. Delmas, Environ. Technol., 35, 355 (2014).CrossRefPubMedGoogle Scholar
  17. 17.
    B. Xing, C. Shi, C. Zhang, G. Yi, L. Chen, H. Guo, G. Huang and J. Cao, J. Nanomater, 2016, 10 (2016).CrossRefGoogle Scholar
  18. 18.
    A. C. Martins, A. L. Cazetta, O. Pezoti, J.R.B. Souza, T. Zhang, E. J. Pilau, T. Asefa and V. C. Almeida, Ceram. Int., 43, 4411 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. S. Ngoh and M. A. Nawi, Mater. Res. Bull., 76, 8 (2016).CrossRefGoogle Scholar
  20. 20.
    A. H. Jawad and M. A. Nawi, React. Kinet. Mech. Cat., 106, 49 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Shi, J. Zheng, P. Wu and X. Ji, Catal. Commun., 9, 1846 (2008).CrossRefGoogle Scholar
  22. 22.
    G. L. Puma, A. Bono, D. Krishnaiah and J. G. Collin, J. Hazard. Mater., 157, 209 (2008).CrossRefGoogle Scholar
  23. 23.
    L. Andronic and A. Duta, Thin Solid Films, 515, 6294 (2007).CrossRefGoogle Scholar
  24. 24.
    A. López, D. Acosta, A. I. Martínez and J. Santiago, Powder Technol., 202, 111 (2010).CrossRefGoogle Scholar
  25. 25.
    B. Stefanov and L. Österlund, Coatings, 4, 587 (2014).CrossRefGoogle Scholar
  26. 26.
    M. Zafar, J.-Y. Yun and D.-H. Kim, Korean J. Chem. Eng., 35, 567 (2017).CrossRefGoogle Scholar
  27. 27.
    N. N. Bahrudin and M. A. Nawi, React. Kinet. Mech. Cat., 124, 153 (2018).CrossRefGoogle Scholar
  28. 28.
    M. A. Nawi and S. M. Zain, Appl. Surf. Sci., 258, 6148 (2012).CrossRefGoogle Scholar
  29. 29.
    F. Marrakchi, W. Khanday, M. Asif and B. Hameed, Int. J. Biol. Macromol., 93, 1231 (2016).CrossRefPubMedGoogle Scholar
  30. 30.
    B. Xing, C. Shi, C. Zhang, G. Yi, L. Chen, H. Guo, G. Huang and J. Cao, J. Nanomater, 2016, 3 (2016).CrossRefGoogle Scholar
  31. 31.
    A. Dada, A. Olalekan, A. Olatunya and O. Dada, IOSR J. Appl. Chem., 3, 38 (2012).CrossRefGoogle Scholar
  32. 32.
    S. Nethaji, A. Sivasamy and A. Mandal, Int. J. Environ. Sci. Technol., 10, 231 (2013).CrossRefGoogle Scholar
  33. 33.
    E. Heraldy, Y. Hidayat and M. Firdaus, IOP Conf. Series: Mater. Sci. Eng., 107, 012067 (2016).CrossRefGoogle Scholar
  34. 34.
    Y. S. Ngoh and M. A. Nawi, Int. J. Environ. Sci. Technol., 13, 907 (2016).CrossRefGoogle Scholar
  35. 35.
    M.A. Nawi, S. Sabar, A. H. Jawad, Sheilatina and W. S. W. Ngah, Biochem. Eng. J., 49, 317 (2010).CrossRefGoogle Scholar
  36. 36.
    R. Ansari, Mohammad-khah and M. Nazmi, Current Chem. Lett., 2, 215 (2013).CrossRefGoogle Scholar
  37. 37.
    J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang and S. Jiazhong, Sol. Energy Mater. Sol. Cells, 90, 1773 (2006).CrossRefGoogle Scholar
  38. 38.
    S. Sabar and M. A. Nawi, Desalin. Water Treat., 57, 10312 (2016).CrossRefGoogle Scholar
  39. 39.
    M.A. Nawi, S. Sabar and Sheilatina, J. Colloid Interface Sci., 372, 80 (2012).CrossRefPubMedGoogle Scholar
  40. 40.
    T. Ghosh and W.-C. Oh, Asian J. Chem., 24, 5419 (2012).Google Scholar
  41. 41.
    Y.D. Shahamat, M. Farzadkia, S. Nasseri, A. H. Mahvi, M. Gholami and A. Esrafili, J. Environ. Health Sci. Eng., 12, 50 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    J. Chen, J. Zhang, Y. Xian, X. Ying, M. Liu and L. Jin, Water Res., 39, 1340 (2005).CrossRefPubMedGoogle Scholar
  43. 43.
    Y. W. Kang, M.-J. Cho and K.-Y. Hwang, Water Res., 33, 1247 (1999).CrossRefGoogle Scholar
  44. 44.
    M. Kolb, M. Bahadir and B. Teichgräber, Water Res., 122, 645 (2017).CrossRefPubMedGoogle Scholar
  45. 45.
    P. Jin, R. Chang, D. Liu, K. Zhao, L. Zhang and Y. Ouyang, J. Environ. Chem. Eng., 2, 1040 (2014).CrossRefGoogle Scholar
  46. 46.
    K. Baransi, Y. Dubowski and I. Sabbah, Water Res., 46, 789 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations