Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 7, pp 1509–1516 | Cite as

Conceptual feasibility studies of a COX-free hydrogen production from ammonia decomposition in a membrane reactor for PEM fuel cells

  • Sehwa Kim
  • Jiseon Song
  • Hankwon Lim
Materials (Organic, Inorganic, Electronic, Thin Films)

Abstract

COX-free hydrogen production from ammonia decomposition in a membrane reactor (MR) for PEM fuel cells was studied using a commercial chemical process simulator, Aspen HYSYS®. With process simulation models validated by previously reported kinetics and experimental data, the effect of key operating parameters such as H2 permeance, He sweep gas flow, and operating temperature was investigated to compare the performance of an MR and a conventional packed-bed reactor (PBR). Higher ammonia conversions and H2 yields were obtained in an MR than ones in a PBR. It was also found that He sweep gas flow was favorable for XNH3 enhancement in an MR with a critical value (5 kmol h-1), above which no further effect was observed. A higher H2 permeance led to an increased H2 yield and H2 yield enhancement in an MR with the reverse effect of operating temperature on the enhancement. In addition, lower operating temperature resulted in higher XNH3 enhancement and H2 yield enhancement as well as NG cost savings in a MR compared to a conventional PBR.

Keywords

Ammonia Decomposition Membrane Reactor Process Simulation Hydrogen PEM Fuel Cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Dragomir, O. Dragomir, N. Olariu, and A. Oprea, SBEEF, 3, 5 (2013).Google Scholar
  2. 2.
    X. Lu, S. Xie, H. Yang, Y. Tong and H. Ji, Chem. Soc. Rev., 43, 7581 (2014).CrossRefGoogle Scholar
  3. 3.
    M. E. E. Abashar, Y. S. Al-Sughair and I. S. Al-Mutaz, Appl. Catal. A-Gen., 236, 35 (2002).CrossRefGoogle Scholar
  4. 4.
    A. Midilli, Int. J. Glob. Warm., 10, 354 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. Yang, H. Nie, X. Chen, X. Chen and S. Huang, J. Power Sources, 236, 238 (2013).CrossRefGoogle Scholar
  6. 6.
    C. Lamy, T. Jaubert, S. Baranton and C. Coutanceau, J. Power Source, 245, 927 (2014).CrossRefGoogle Scholar
  7. 7.
    O. Z. Sharaf and M. F. Orhan, Renew. Sust. Energ. Rev., 32, 810 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Sousa and E. R. Gonzalez, J. Power Source, 147, 32 (2005).CrossRefGoogle Scholar
  9. 9.
    R. Mohtadi, W.-K. Lee and J. W. Van Zee, Appl. Catal. B-Environ., 56, 37 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Thounthong, S. Raël and B. Davat, J. Power Source, 193, 376 (2009).CrossRefGoogle Scholar
  11. 11.
    J. J. Baschuk and X. Li, Appl. Energy, 86, 181 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Contreras, F. Posso and E. Guervos, Appl. Energy, 87, 1376 (2010).CrossRefGoogle Scholar
  13. 13.
    B. Shabani and J. Andrews, Int. J. Hydrogen Energy, 36, 5442 (2011).CrossRefGoogle Scholar
  14. 14.
    F.-C. Wang and Y.-S. Chiang, Int. J. Hydrogen Energy, 37, 11299 (2012).CrossRefGoogle Scholar
  15. 15.
    U. Byambasuren, Y. Jeon, D. Altansukh, Y. Ji and Y.-G. Shul, Korean J. Chem. Eng., 33, 1831 (2016).CrossRefGoogle Scholar
  16. 16.
    N. Q. Minh, Solid State Ion., 174, 271 (2004).CrossRefGoogle Scholar
  17. 17.
    D. J. L. Brett, A. Atkinson, N. P. Brandon and S. J. Skinner, Chem. Soc. Rev., 37, 1568 (2008).CrossRefGoogle Scholar
  18. 18.
    A. J. Jacobson, Chem. Mat., 22, 660 (2010).CrossRefGoogle Scholar
  19. 19.
    A. L. Dicks, Curr. Opin. Solid State Mat. Sci., 8, 379 (2004).CrossRefGoogle Scholar
  20. 20.
    J. Brouwer, F. Jabbari, E. M. Leal and T. Orr, J. Power Source, 158, 213 (2006).CrossRefGoogle Scholar
  21. 21.
    T.-Y. Kim, B.-S. Park and Y.-K. Yeo, Korean J. Chem. Eng., 34, 1952 (2017).CrossRefGoogle Scholar
  22. 22.
    R.-H. Song, C.-S. Kim and D.R. Shin, J. Power Source, 86, 289 (2000).CrossRefGoogle Scholar
  23. 23.
    M. Neergat and A. K. Shukla, J. Power Source, 102, 317 (2001).CrossRefGoogle Scholar
  24. 24.
    N. Sammes, R. Bove and K. Stahl, Curr. Opin. Solid State Mat. Sci., 8, 372 (2004).CrossRefGoogle Scholar
  25. 25.
    E. Gülzow, J. Power Source, 61, 99 (1996).CrossRefGoogle Scholar
  26. 26.
    K. Kordesch, V. Hacker, J. Gsellmann, M. Cifrain, G. Faleschini, P. Enzinger, R. Fankhauser, M. Ortner, M. Muhr and R.R. Aronson, J. Power Source, 86, 162 (2000).CrossRefGoogle Scholar
  27. 27.
    B. Bej, N. C. Pradhan and S. Neogi, Catal. Today, 207, 28 (2013).CrossRefGoogle Scholar
  28. 28.
    T. L. LeValley, A. R. Richard and M. Fan, Int. J. Hydrogen Energy, 39, 16983 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Nawfal, C. Gennequin, M. Labaki, B. Nsouli, A. Aboukaïs and E. Abi-Aad, Int. J. Hydrogen Energy, 40, 1269 (2015).CrossRefGoogle Scholar
  30. 30.
    A. Ursua, L. M. Gandia and P. Sanchis, Proc. IEEE, 100, 410 (2012).CrossRefGoogle Scholar
  31. 31.
    M. Voldsund, K. Jordal and R. Anantharaman, Int. J. Hydrogen Energy, 41, 4969 (2016).CrossRefGoogle Scholar
  32. 32.
    C. Song, Catal. Today, 77, 17 (2002).CrossRefGoogle Scholar
  33. 33.
    Y.-T. Seo, D.-J. Seo, J.-H. Jeong and W.-L. Yoon, J. Power Source, 160, 505 (2006).CrossRefGoogle Scholar
  34. 34.
    Y.-H. Kim, E.-D. Park, H.-C. Lee and D. Lee, Appl. Catal. A-Gen., 366, 363 (2009).CrossRefGoogle Scholar
  35. 35.
    E.-D. Park, D. Lee and H.-C. Lee, Catal. Today, 139, 280 (2009).CrossRefGoogle Scholar
  36. 36.
    R.-Y. Chein, Y.-C. Chen, C.-S. Chang and J. N. Chung, Int. J. Hydrogen Energy, 35, 589 (2010).CrossRefGoogle Scholar
  37. 37.
    A.-H. Lu, J.-J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C. W. Lehmann, O. Terasaki and F. Schüth, J. Am. Chem. Soc., 132, 14152 (2010).CrossRefGoogle Scholar
  38. 38.
    M. Miyamoto, R. Hayakawa, Y. Makino, W. Oumi, S. Uemiya and M. Asanuma, Int. J. Hydrogen Energy, 39, 10154 (2014).CrossRefGoogle Scholar
  39. 39.
    A. D. Carlo, L. Vecchione and Z. D. Prete, Int. J. Hydrogen Energy, 39, 808 (2014).CrossRefGoogle Scholar
  40. 40.
    G. Li, M. Kanezashi, T. Yoshioka and T. Tsuru, AIChE J., 59, 168 (2013).CrossRefGoogle Scholar
  41. 41.
    G. Li, M. Kanezashi, H. R. Lee, M. Maeda, T. Yoshioka and T. Tsuru, Int. J. Hydrogen Energy, 37, 12105 (2012).CrossRefGoogle Scholar
  42. 42.
    M. E. E. Abashar, J. King Saud Univ., Eng. Sci. (2016), DOI:10.1016/ j.jksues.2016.01.002.Google Scholar
  43. 43.
    M. R. Rahimpour and A. Asgari, Int. J. Hydrogen Energy, 34, 5795 (2009).CrossRefGoogle Scholar
  44. 44.
    J. P. Collins and J. D. Way, J. Membr. Sci., 96, 259 (1994).CrossRefGoogle Scholar
  45. 45.
    A. Chambers, Y. Yoshii, T. Inada and T. Miyamoto, Can. J. Chem. Eng., 74, 929 (1996).CrossRefGoogle Scholar
  46. 46.
    F. R. García-García, Y. H. Ma, I. Rodríguez-Ramos and A. Guerrero-Ruiz, Catal. Commun., 9, 482 (2008).CrossRefGoogle Scholar
  47. 47.
    E. Rizzuto, P. Palange and Z. D. Prete, Int. J. Hydrogen Energy, 39, 11403 (2014).CrossRefGoogle Scholar
  48. 48.
    N. Itoh, A. Oshima, E. Suga and T. Sato, Catal. Today, 236, 70 (2014).CrossRefGoogle Scholar
  49. 49.
    A. D. Carlo, A. Dell’Era and Z. D. Prete, Int. J. Hydrogen Energy, 36, 11815 (2011).CrossRefGoogle Scholar
  50. 50.
    H. Jasuja, G. W. Peterson, J. B. Decoste, M. A. Browe and K. S. Walton, Chem. Eng. Sci., 124, 118 (2015).CrossRefGoogle Scholar
  51. 51.
    F. Vitse, M. Cooper and G. G. Botte, J. Power Source, 142, 18 (2005).CrossRefGoogle Scholar
  52. 52.
    I. A. Amar, R. Lan, C. T. G. Petit and S. Tao, J. Solid State Electochem., 15, 1845 (2011).CrossRefGoogle Scholar
  53. 53.
    J. M. Modak, Resonance, 16, 1159 (2011).CrossRefGoogle Scholar
  54. 54.
    M. I. Temkin and V. Pyzhev, Acta Phys. Chim. URSS, 12, 217 (1940).Google Scholar
  55. 55.
    A. H. West, D. Posarac and N. Ellis, Bioresour. Technol., 99, 6587 (2008).CrossRefGoogle Scholar
  56. 56.
    M. Bassyouni, S.W. ul Hasan, M. H. Abdel-Aziz, S. M.-S. Abdelhamid, S. Naveed, A. Hussain and F.N. Ani, Energy Conv. Manag., 88, 693 (2014).CrossRefGoogle Scholar
  57. 57.
    L. E. Øi, T. Bråthen, C. Berg, S. K. Brekne, M. Flatin, R. Johnsen, I. G. Moen and E. Thomassen, Energy Procedia, 51, 224 (2014).CrossRefGoogle Scholar
  58. 58.
    B. Lee, S. Lee, H. Y. Jung, S.-K. Ryi and H. Lim, Front. Chem. Sci. Eng., 10, 224 (2014).Google Scholar
  59. 59.
    B. Lee, S. Jeong, S. Lee, H.-Y. Jung, S.-K. Ryi and H. Lim, Greenh. Gases, 7, 542 (2017).CrossRefGoogle Scholar
  60. 60.
    A. Sarvar-Amini, R. Sotudeh-Gharebagh, H. Bashiri, N. Mostoufi and A. Haghtalab, Energy Fuels, 21, 3593 (2007).CrossRefGoogle Scholar
  61. 61.
    M. Roberts, R. Zabransky, S. Doong and J. Lin, Single membrane reactor configuration for separation of hydrogen, carbon dioxide and hydrogen sulfide, Department of Energy, U.S.A. (2008).CrossRefGoogle Scholar
  62. 62.
    S. Jeong, S. Kim, B. Lee, S.-K. Ryi and H. Lim, Int. J. Hydrogen Energy (2017), DOI:10.1016/j.ijhydene.2017.07.202.Google Scholar
  63. 63.
    S. Kim, S.-K. Ryi and H. Lim, Int. J. Hydrogen Energy (2017), DOI: 10.1016/j.ijhydene.2017.09.084.Google Scholar
  64. 64.
    P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao and S. Liu, J. Membr. Sci., 291, 148 (2007).CrossRefGoogle Scholar
  65. 65.
    D. Mendes, V. Chibante, J.-M. Zheng, S. Tosti, F. Borgognoni, A. Mendes and L.M. Madeira, Int. J. Hydrogen Energy, 35, 12596 (2010).CrossRefGoogle Scholar
  66. 66.
    M. P. Lobera, J. M. Serra, S. P. Foghmoes, M. Søgaard and A. Kaiser, J. Membr. Sci., 385-386, 154 (2011).CrossRefGoogle Scholar
  67. 67.
    A. Santos, J. Coronas, M. Menéndez and J. Santamaría, Catal. Lett., 30, 189 (1994).CrossRefGoogle Scholar
  68. 68.
    M. B. Rao and S. Sircar, J. Membr. Sci., 110, 109 (1996).CrossRefGoogle Scholar
  69. 69.
    P. Ferreira-Aparicio, M. Benito, K. Kouachi and S. Menad, J. Catal., 231, 331 (2005).CrossRefGoogle Scholar
  70. 70.
    S. Bhatia, C. Y. Thien and A. R. Mohamed, Chem. Eng. J., 148, 525 (2009).CrossRefGoogle Scholar
  71. 71.
    W. Yu, T. Ohmori, T. Yamamoto, A. Endo, M. Nakaiwa, T. Hayakawa and N. Itoh, Int. J. Hydrogen Energy, 30, 1071 (2005).CrossRefGoogle Scholar
  72. 72.
    B. Lee and H. Lim, Korean J. Chem. Eng., 34, 199 (2017).CrossRefGoogle Scholar
  73. 73.
    E. Kikuchi, Catal. Today, 56, 97 (2000).CrossRefGoogle Scholar
  74. 74.
    H. Lim and S. T. Oyama, J. Membr. Sci., 378, 179 (2011).CrossRefGoogle Scholar
  75. 75.
    M. R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian and S. Mohebi, Chem. Eng. Process., 121, 24 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Advanced Materials and Chemical EngineeringCatholic University of DaeguGyeongbukKorea

Personalised recommendations