Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1354–1364 | Cite as

Organosilicon resin-based carbon/ceramic polygranular composites with improved oxidation resistance

  • Krystian Sokolowski
  • Aneta Fraczek-Szczypta
  • Janusz Tomala
  • Stanislaw Blazewicz
Polymer, Industrial Chemistry


We examined the thermo-mechanical properties of carbon materials modified with silicon oxycarbide (Si-O-C) and silicon carbide (Si-C). These compounds were obtained by the impregnation of carbon components with a silicon-containing polymer resin. Graphite and anthracite powders were used as carbon components, and poly[methyl(phenyl) siloxane] resin (P) was used as the ceramic precursor. Carbon/polymer compositions (C/P) were subjected to two-stage annealing, first to 1,000 °C and next to 2,000 °C in an inert atmosphere, leading to the formation of C/Si-O-C and C/Si-C composite samples, respectively. The materials were then examined under conditions of isothermal oxidation to determine their oxidation resistance and the mechanical properties before and after oxidation tests. The structure of the samples before and after oxidation was studied. C/Si-C composites, despite their high porosity, proved to have enhanced resistance to oxidation at 600 °C, although they had lower mechanical properties in comparison to C/Si-O-C samples.


Polysiloxane Resin Carbon Materials Silicon Oxycarbide Silicon Carbide Oxidation Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. McKee, Fundamental Issues in Control of Carbon Gasification Reactivity, 192, 483 (1991).CrossRefGoogle Scholar
  2. 2.
    L. M. Manocha, Sadhana, 28, 349 (2003).CrossRefGoogle Scholar
  3. 3.
    T. Sogabe, O. Okada, K. Kuroda and M. Inagaki, Carbon, 35, 67 (1997).CrossRefGoogle Scholar
  4. 4.
    G. Fitzer and L. M. Manocha, Carbon Reinforcement and Carbon/Carbon Composites, 281 (1998).Google Scholar
  5. 5.
    X. Wu and L. R. Radovic, Carbon, 44, 141 (2006).CrossRefGoogle Scholar
  6. 6.
    C. Isola, P. Appendino, F. Bosco, M. Ferraris and M. Salvo, Carbon, 36, 1213 (1998).CrossRefGoogle Scholar
  7. 7.
    W. Lu and D. D. L. Chung, Carbon, 40, 1249 (2002).CrossRefGoogle Scholar
  8. 8.
    S. Walter, G. D. Soraru, H. Brequel and S. Enzo, J. Eur. Ceram. Soc., 22, 2389 (2002).CrossRefGoogle Scholar
  9. 9.
    G. D. Semchenko, I. Y. Shuteeva, O. N. Slepchenko and L. A. Angolenko, Refractories and Industrial Ceramics, 46, 260 (2005).CrossRefGoogle Scholar
  10. 10.
    W. Kowbel, J. C. Withers and P. O. Ransone, Carbon, 33, 415 (1995).CrossRefGoogle Scholar
  11. 11.
    C. T. Ho and D. D. L. Chung, Carbon, 28, 815 (1990).CrossRefGoogle Scholar
  12. 12.
    H. I. Yoo, H. S. Kim, B. G. Hong, I. C. Sihn, K. H. Lim, B. J. Lim and S. Y. Moon, J. Eur. Ceram. Soc., 36, 1581 (2016).CrossRefGoogle Scholar
  13. 13.
    T. L. Dhami, O. P. Bahl and B. R. Awasthy, Carbon, 33, 479 (1995).CrossRefGoogle Scholar
  14. 14.
    P. Lespade, N. Richet and P. Goursat, Acta Astronaut., 60, 858 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. C. Zhu, S. Ohtani, Y. Sato and N. Iwamoto, Carbon, 36, 929 (1998).CrossRefGoogle Scholar
  16. 16.
    L. M. Manocha, S. Manocha, K. B. Patel and P. Glogar, Carbon, 38, 1481 (2000).CrossRefGoogle Scholar
  17. 17.
    H. J. Li, H. Xue, Y. J. Wang, Q. G. Fu and D. J. Yao, Surf. Coatings Technol., 201, 9444 (2007).CrossRefGoogle Scholar
  18. 18.
    C. Paluszkiewicz, T. Gumula, J. Podporska and M. Blazewicz, J. Mol. Struct., 792, 176 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Xia, C. Lu and Y. Yang, New Carbon Materials, 30, 236 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Weinmann, E. Ionescu, R. Riedel and F. Aldinger, Advanced Ceramics, 2, 1025 (2013).CrossRefGoogle Scholar
  21. 21.
    M. A. Schiavon, E. Rodovanovic and I. V. P. Yoshida, Powder Technol., 123, 232 (2002).CrossRefGoogle Scholar
  22. 22.
    F. Kolar, V. Machovic, J. Svitilova and L. Borecka, Mater. Chem. Phys., 86, 88 (2004).CrossRefGoogle Scholar
  23. 23.
    O. S. Kwon, S. H. Hong and H. Kim, J. Eur. Ceram. Soc., 23, 3119 (2003).CrossRefGoogle Scholar
  24. 24.
    M. A. Schiavon, S. U. A. Redondo, S. R. O. Pina and I. V. P. Yoshida, J. Non. Cryst. Solids, 304, 92 (2002).CrossRefGoogle Scholar
  25. 25.
    L. Duan, Q. Ma and Z. Chen, J. Eur. Ceram. Soc., 33, 841 (2013).CrossRefGoogle Scholar
  26. 26.
    T. Gumula, C. Paluszkiewicz and M. Blazewicz, J. Mol. Struct., 704, 259 (2004).CrossRefGoogle Scholar
  27. 27.
    T. Xu, Q. Ma, Y. Wang and Z. Chen, Ceram. Int., 40, 13787 (2014).CrossRefGoogle Scholar
  28. 28.
    Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou and Z. Luo, Carbon, 45, 1686 (2007).CrossRefGoogle Scholar
  29. 29.
    T. Gumula, C. Paluszkiewicz and S. Blazewicz, J. Anal. Appl. Pyrolysis., 86, 375 (2009).CrossRefGoogle Scholar
  30. 30.
    Q. Wu, Q. Zhang, L. Zhao, S. Li, L. Wu and J. Jiang, J. Hazard. Mater., 336, 222 (2017).CrossRefGoogle Scholar
  31. 31.
    L. Guan, J. Gao, Y. Pei, L. Zhao, L. Gong, Y. Wan, H. Zhou, N. Zheng, X. Du, L. Wu, J. Jiang, H. Liu, L. Tang and Y. Mai, Carbon, 107, 573 (2016).CrossRefGoogle Scholar
  32. 32.
    X. Yang, Q. Huang, Z. Su, L. Chai, X. Wang and L. Zhou, Ceram. Int., 39, 5053 (2012).CrossRefGoogle Scholar
  33. 33.
    M. Wang, L. Yang, C. Yu and C. Charles, Ceram. Int., 38, 2449 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Krystian Sokolowski
    • 1
  • Aneta Fraczek-Szczypta
    • 1
  • Janusz Tomala
    • 2
  • Stanislaw Blazewicz
    • 1
  1. 1.Department of Biomaterials and Composites, Faculty of Materials Science and CeramicsAGH - University of Science and TechnologyCracowPoland
  2. 2.SGL Carbon Polska S.A.RaciborzPoland

Personalised recommendations