Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1240–1246 | Cite as

Development of batch proportional-integral-derivative controller

  • Won Hyun Kwon
  • Kyung Hwan Ryu
  • Jung-A Hwang
  • Kyeong Hoon Kim
  • Jay H. Lee
  • Su Whan Sung
Process Systems Engineering, Process Safety

Abstract

Previous batch control methods, such as iterative learning control (ILC) or run-to-run (R2R) control, can significantly improve the control performance of the batch process. However, to guarantee the expected good control performance, a fairly accurate process model is required for these controllers. Also, the implementation is numerically complicated so that it is difficult to be applied to real manufacturing processes. To overcome these problems, a new batch proportional-integral-derivative (PID) control method is proposed, which borrows the concept of the conventional PID control method. Simulation studies confirm that the proposed method shows acceptable performance in tracking a setpoint trajectory, rejecting disturbances, and robustness to noises and variation of process dynamics. The application to the commercial batch process of a single crystal grower verifies that the proposed method can significantly contribute to improving the control performances of real batch processes.

Keywords

Batch Process Batch Controller Batch PID Controller Feed Forward Controller Czochralski Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Wang, G. Gao and F. J. Doyle, J. Process Control, 19, 1589 (2009).CrossRefGoogle Scholar
  2. 2.
    E. Del Castillo and A.M. Hurwitz, J. Qual. Technol., 29, 184 (1997).CrossRefGoogle Scholar
  3. 3.
    H. S. Ahn, Y. Chen and K. L. Moore, IEEE Trans. Syst. Man. Cybern. C Appl. Rev., 37, 1099 (2007).CrossRefGoogle Scholar
  4. 4.
    D. Yu, Y. Zhu, K. Yang, C. Hu and M. Li, Proc. Inst. Mech. Eng. I J. Syst. Control Eng., 228, 658 (2014).Google Scholar
  5. 5.
    K. S. Lee and J. H. Lee, J. Process Control, 13, 607 (2003).CrossRefGoogle Scholar
  6. 6.
    E. Sachs, R. S. Guo, S. Ha and A. Hu, IEEE Trans. Semicond. Manuf., 4, 134 (1991).CrossRefGoogle Scholar
  7. 7.
    T. F. Edgar, W. J. Campbell and C. Bode, Proceedings of the 38th IEEE Conference, 4, 4185 (1999).Google Scholar
  8. 8.
    K. S. Lee, S. H. Bang and K. S. Chang, J. Process Control, 4, 77 (1994).CrossRefGoogle Scholar
  9. 9.
    I. Chin, S. J. Qin, K. S. Lee and M. Cho, Automatica, 40, 1913 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Lu, Z. Cao, Z. Wang and F. Gao, Ind. Eng. Chem. Res., 54, 5683 (2015).CrossRefGoogle Scholar
  11. 11.
    S.K. Oh and J. M. Lee, J. Chem. Eng. Jpn., 50, 415 (2017).CrossRefGoogle Scholar
  12. 12.
    S.W. Sung, J. Lee and I. B. Lee, Process identification and PID control, John Wiley & Sons (2009).CrossRefGoogle Scholar
  13. 13.
    G. F. Franklin, J.D. Powell and M. L. Workman, Digital control of dynamic systems (Vol. 3), CA: Addison-Wesley (1998).Google Scholar
  14. 14.
    K. S. Lee, W. C. Kim and J. H. Lee, J. Inst. Control, Robotics Systems, 2, 148 (1996).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Won Hyun Kwon
    • 1
  • Kyung Hwan Ryu
    • 2
  • Jung-A Hwang
    • 1
  • Kyeong Hoon Kim
    • 1
  • Jay H. Lee
    • 2
  • Su Whan Sung
    • 1
  1. 1.Department of Chemical EngineeringKyungpook National UniversityDaeguKorea
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeonKorea

Personalised recommendations