Production of high purity rare earth mixture from iron-rich spent fluid catalytic cracking (FCC) catalyst using acid leaching and two-step solvent extraction process

  • Le-Phuc Nguyen
  • Yen Thi Hai Pham
  • Phuong Thuy Ngo
  • Tri Van Tran
  • Loc Vinh Tran
  • Nam Thi Hoai Le
  • Luong Huu Nguyen
  • Tung Thanh Dang
  • Duc Anh Nguyen
  • Marco Wenzel
  • David Hartmann
  • Karsten Gloe
  • Jan J. Weigand
  • Klaus Kretschmer
Research papers
  • 30 Downloads

Abstract

Acid leaching and a two-step solvent extraction procedure were developed to produce high purity mixture of La and Ce from iron-rich spent FCC catalyst discharged from Dzung Quat refinery (Vietnam). Acid leaching of the spent catalyst with 2M HNO3 and a solid-to-liquid ratio of 1/3 at 80 °C in 1 h dissolved almost 90% of La while 12% of Al and 25% of Fe were transferred to the leachate. The extraction of RE metals and main impurities such as Al and Fe by a mixture of di-2-ethylhexyl phosphoric acid (D2EHPA) and tributyl phosphate (TBP) was investigated. Experiments showed that it was necessary to remove Fe before extracting RE and the optimum extraction conditions for a high recovery of RE while 0% of Al extraction were pH-1, contact time=10min, and D2EHPA/TBP volume ratio= 4: 1. At these conditions, the extraction yields of La(III) and Ce(III) were 72% and 89%, respectively. A two-step solvent extraction was developed to achieve a high purity of RE mixture, which included (1) the removal of impurity Fe by 25% (v/v) diisooctyl phosphinic acid (DiOPA) in n-octane for 140 min, (2) the extraction of rare earths by a mixture of di-2-ethylhexyl phosphoric acid (D2EHPA) and tributyl phosphate (TBP) in n-octane for 10 min without the need for adjusting the pH of the leaching solution.

Keywords

Spent FCC Catalyst Rare Earth Leaching Solvent Extraction Dzung Quat Refinery Iron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Chiranjeevi, N. Ravichander, D. T. Gokak, V. Ravikumar and N. V. Choudary, Petrol. Sci. Technol., 32, 470 (2014).CrossRefGoogle Scholar
  2. 2.
    M. I. M. Chou, L. M. Chen and S. F. J. Chou, Int. J. Environ. Sust., 8, 19 (2013).Google Scholar
  3. 3.
    F. Ferella, V. Innocenzi and F. Maggiore, Res. Conserv. Recy., 108, 10 (2016).CrossRefGoogle Scholar
  4. 4.
    C. T. Nguyen, H. M. Nguyen and M. Q. Ta, PetroVietnam J., 11, 43 (2013).Google Scholar
  5. 5.
    X. Gao and W. T. Owens, US Patent, US20120156116A1 (2012).Google Scholar
  6. 6.
    A. Jordens, Y. P. Cheng and K. E. Waters, Miner. Eng., 41, 97 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Binnemans, P. T. Jones, B. Blanpain, T. V. Gerven, Y. Yang, A. Waltone and M. Buchertf, J. Clean. Prod., 51, 1 (2013).CrossRefGoogle Scholar
  8. 8.
    P. F. Duby, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons Inc. (2000).Google Scholar
  9. 9.
    L. Li, S. Xu, Z. Ju and F. Wu, Hydrometallurgy, 100, 41 (2009).CrossRefGoogle Scholar
  10. 10.
    P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T. M. Suzuki and K. Inoue, J. Power Sources, 77, 116 (1999).CrossRefGoogle Scholar
  11. 11.
    L. Pietrelli, B. Bellomo, D. Fontana and M. R. Montereali, Hydrometallurgy, 66, 135 (2002).CrossRefGoogle Scholar
  12. 12.
    P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T. M. Suzuki and K. Inoue, Hydrometallurgy, 50, 61 (1998).CrossRefGoogle Scholar
  13. 13.
    Y. Jiang, A. Shibayama, K. Liu and T. Fujita, Hydrometallurgy, 76, 1 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. Jiang, A. Shibayama, K. Liu and T. Fujita, Can. Metall. Q., 43, 431 (2004).CrossRefGoogle Scholar
  15. 15.
    C. H. Lee, H. Y. Yen, C. H. Liao, S. R. Popuri, E. I. Cadogan and C. J. Hsu, J. Mater. Cycles Waste Manage., 19, 102 (2017).CrossRefGoogle Scholar
  16. 16.
    C. H. Lee, Y. J. Chen, C. H. Liao, S. R. Popuri, S. L. Tsai and C. E. Hung, Metall. Mater. Trans. A., 44, 5825 (2013).CrossRefGoogle Scholar
  17. 17.
    V. Innocenzi, F. Ferella, I. D. Michelis and F. Vegliò, J. Ind. Eng. Chem., 24, 92 (2015).CrossRefGoogle Scholar
  18. 18.
    Z. Zhao, Z. Qiu, J. Jang, S. Lu, L. Cao, W. Zhang and Y. Xu, Hydrometallurgy, 167, 183 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Wenzel, K. Schnaars, N. Kelly, L. Götzke, M. S. Robles, K. Kretschmer, P. N. Le, D. T. Tung, N. H. Luong, N. A. Duc, D. V. Sy, K. Gloe and J. J. Weigand, Rare Metal Technology, John Wiley & Sons Inc., NJ (2016).Google Scholar
  20. 20.
    ASTM D7085, Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry (XRF) (2010).Google Scholar
  21. 21.
    J. Wang, Y. Xu, L. Wang, L. Zhao, Q. Wang, D. Cui, Z. Long and X. Huang, J. Environ. Chem. Eng., 5, 3711 (2017).CrossRefGoogle Scholar
  22. 22.
    T. Moeller, The Chemistry of the Lanthanides, Reinhold Publishing, New York (1963).Google Scholar
  23. 23.
    C. Xia, A review on iron separation in rare earths hydrometallurgy using precipitation and solvent extractions method, I. M. London, J. R. Goode, G. Moldoveanu, M. S. Rayat Eds., Canad. Institute of Mining, Metallurgy and Petroleum, Westmont (2013).Google Scholar
  24. 24.
    C. K. Gupta and N. Krishnamurthy, Extractive metallurgy of rare earths, CRC Press, Florida (2005).Google Scholar
  25. 25.
    J. W. Roddy, C. F. Coleman and S. Arai, J. Inorg. Nucl. Chem., 33, 1099 (1971).CrossRefGoogle Scholar
  26. 26.
    T. Sato, T. Nakamura and M. Ikeno, Hydrometallurgy, 15, 209 (1985).CrossRefGoogle Scholar
  27. 27.
    H. Matsuyama, Y. Miyake, Y. Izumo and M. Teramoto, Hydrometallurgy, 24, 37 (1990).CrossRefGoogle Scholar
  28. 28.
    M. S. Silberberg, Principles of general chemistry, McGraw-Hill, U. S. A. (2010).Google Scholar
  29. 29.
    G. Avgouropoulos, Environmental Catalysis over Gold-Based Materials, RSC (2013).CrossRefGoogle Scholar
  30. 30.
    D. L. Reger, S. R. Goode and D. W. Ball, Chemistry: Principles and Practice, Brooks/Cole, U. S. A. (2010).Google Scholar
  31. 31.
    V. L. Snoeyink and D. Jenkins, Water Chemistry, John Wiley & Sons, New York (1980).Google Scholar
  32. 32.
    E. Y. Seo, Y. W. Cheong, G. J. Yim, K. W. Min and J. N. Geroni, Catena, 148, 11 (2017).CrossRefGoogle Scholar
  33. 33.
    J. Tian, R. Chi, G. Zhu, S. Xu and Z. Zhang, Nonferrous Met., 2, 57 (2000).Google Scholar
  34. 34.
    K. Liu, Y. Wang, M. Wei, X. Tang and P. Zhang, China Patent, CN 107130120A (2017).Google Scholar
  35. 35.
    M. Maeda, H. Narita, C. Tokoro, M. Tanaka, R. Motokawa, H. Shiwaku and T. Yaita, Sep. Purif. Technol., 177, 176 (2017).CrossRefGoogle Scholar
  36. 36.
    M. Liu and Y. Zhou, The Chinese J. Nonferrous Met., 15(10), 1648 (2005).Google Scholar
  37. 37.
    S. Yu and J. Chen, Hydrometallurgy, 22, 183 (1989).CrossRefGoogle Scholar
  38. 38.
    A. F. Osaka, I. M. Nara and M. T. Osaka, US Patent, US 4582691A (1986).Google Scholar
  39. 39.
    D. Nucciarone, B. Jakovljevic, B. A. Fir Medeiros, J. Hill-house, M. DePalo, K. C. Sole, P. M. Cole, J. S. Preston, D. J. Robinson (Eds.), Proceedings of the International Solvent Extraction Conference ISEC, 1, 402 (2002).Google Scholar
  40. 40.
    L. Lin-yan, X. Sheng-ming, J. Zhong-jun, Z. Zhang, L. Fu-hui and L. Guo-bao, Trans. Nonferrous Met. Soc. China, 20, 205 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Le-Phuc Nguyen
    • 1
  • Yen Thi Hai Pham
    • 1
  • Phuong Thuy Ngo
    • 1
  • Tri Van Tran
    • 1
  • Loc Vinh Tran
    • 1
    • 4
  • Nam Thi Hoai Le
    • 4
  • Luong Huu Nguyen
    • 1
  • Tung Thanh Dang
    • 1
  • Duc Anh Nguyen
    • 1
  • Marco Wenzel
    • 2
  • David Hartmann
    • 2
  • Karsten Gloe
    • 2
  • Jan J. Weigand
    • 2
  • Klaus Kretschmer
    • 3
  1. 1.Catalysis Research Department, Vietnam Petroleum InstituteSaigon Hi-Tech ParkHo Chi Minh CityVietnam
  2. 2.Department of Chemistry and Food ChemistryTU DresdenGermany
  3. 3.Delta Engineering & Chemistry GmbHGroβglienickeGermany
  4. 4.Vietnam Academy of Science and TechnologyVietnamGermany

Personalised recommendations