Korean Journal of Chemical Engineering

, Volume 35, Issue 5, pp 1083–1088 | Cite as

Influence of calcination temperature on the structure and properties of Al2O3 as support for Pd catalyst

  • Mi Yeon Byun
  • Ji Sun Kim
  • Dae-Won Park
  • Man Sig Lee
Catalysis, Reaction Engineering


We investigated the influence of the calcination temperature on the structural properties of Al2O3 and how the resultant Al2O3 support affects the characteristics of Pd/Al2O3 catalysts. Al2O3 pretreated at different calcination temperatures ranging from 500 °C to 1,150 °C, was used as catalyst supports. The Pd/Al2O3 catalysts were prepared by a deposition-precipitation method using a pH 7.5 precursor solution. Characterization of the prepared Pd/Al2O3 catalysts was performed by X-ray diffraction (XRD), N2-physisorption, CO2-temperature programmed desorption (TPD), CO-chemisorption, and field emission-transmission electron microscopic (FE-TEM) analyses. The CO-chemisorption results showed that the Pd catalyst with the Al2O3 support calcined at 900 °C, Pd/Al2O3 (900), had the highest and most uniformly dispersed Pd particles, with a Pd dispersion of 29.8%. The results suggest that the particle size and distribution of Pd are related to the phase transition of Al2O3 and the ratio of isolated tetrahedral to condensed octahedral coordination sites (i.e., functional groups), where the tetrahedral sites coordinate more favorably with Pd.


Aluminum Oxide Deposition-precipitation Functional Group Palladium Nanoparticle Phase Transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. M. Rao and G. S. Reddi, TrAC-Trends Anal. Chem., 19, 565 (2000).CrossRefGoogle Scholar
  2. 2.
    J. S. Kim, J. H. Baek, Y. B. Ry, S.-S. Hong and M. S. Lee, J. Nanosci. Nanotechnol., 15, 290 (2015).CrossRefGoogle Scholar
  3. 3.
    J. S. Kim, J.-W. Park, S.-S. Hong and M. S. Lee, Sci. Adv. Mater., 8, 1995 (2016).CrossRefGoogle Scholar
  4. 4.
    T. Shirai, H. Watanabe, M. Fuji and M. Takahashi, Annu. Rep. Adv. Ceram. Res. Cent. Nagoya Inst. Technol., 9, 23 (2009).Google Scholar
  5. 5.
    G. Paglia, C. E. Buckley, A. L. Rohl, R. D. Hart, K. Winter, A. J. Studer, B. A. Hunter and J. V. Hanna, Chem. Mater., 16, 220 (2004).CrossRefGoogle Scholar
  6. 6.
    M. F. Peintinger, M. J. Kratz and T. Bredow, J. Mater. Chem. A, 2, 13143 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Haneda, M. Todo, Y. Nakamura and M. Hattori, Catal. Today, 281, 447 (2017).CrossRefGoogle Scholar
  8. 8.
    P. A. Carlsson, E. Fridell and M. Skoglundh, Catal. Lett., 115, 1 (2007).CrossRefGoogle Scholar
  9. 9.
    K. Pattamakomsan, K. Suriye, S. Dokjampa, N. Mongkolsiri, P. Praserthdam and J. Panpranot, Catal. Commun., 11, 311 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Komhom, O. Mekasuwandumrong, P. Praserthdam and J. Panpranot, Catal. Commun., 10, 86 (2008).CrossRefGoogle Scholar
  11. 11.
    J. M. Saniger, Mater. Lett., 22, 109 (1995).CrossRefGoogle Scholar
  12. 12.
    Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu and C.-H. Yan, J. Am. Chem. Soc., 130, 3465 (2008).CrossRefGoogle Scholar
  13. 13.
    J. H. Kwak, C. H. F. Peden and J. Szanyi, J. Phys. Chem. C, 115, 12575 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Amirsalari and S. Farjami Shayesteh, Superlattices Microstruct., 82, 507 (2013).CrossRefGoogle Scholar
  15. 15.
    O. B. Belskaya, I. G. Danilova, M. O. Kazakov, R. M. Mironenko, A. V. Lavrenov and V. a. Likholobov, ChemInform., 44, 149 (2013).CrossRefGoogle Scholar
  16. 16.
    P. Canton, G. Fagherazzi, M. Battagliarin, F. Menegazzo, F. Pinna and N. Pernicone, Langmuir., 18, 6530 (2002).CrossRefGoogle Scholar
  17. 17.
    Q. Wu, F. Zhang, J. Yang, Q. Li, B. Tu and D. Zhao, Micropor. Mesopor. Mater., 143, 406 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Li, C. Wu, P. Tang and Y. Feng, Mater. Lett., 133, 278 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Gangwar, B. K. Gupta, P. Kumar, S. K. Tripathi and A. K. Srivastava, Dalton Trans., 43, 17034 (2014).CrossRefGoogle Scholar
  20. 20.
    P. Tarte, Spectrochim. Acta Part A Mol. Spectrosc., 23, 2127 (1967).CrossRefGoogle Scholar
  21. 21.
    J. Gangwar, K. K. Dey, Komal, Praveen, S. K. Tripathi and A. K. Srivastava, Adv. Mater. Lett., 2, 402 (2011).CrossRefGoogle Scholar
  22. 22.
    J. Preudhomme and P. Tarte, Acta Part A Mol. Spectrosc., 27, 845 (1971).CrossRefGoogle Scholar
  23. 23.
    K. Ito, M. Ohshima, H. Kurokawa, K. Sugiyama and H. Kurokawa, Catal. Commun., 3, 527 (2002).CrossRefGoogle Scholar
  24. 24.
    I. Balint, A. Miyazaki and K. I. Aika, Chem. Mater., 13, 932 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Trueba and S. P. Trasatti, Eur. J. Inorg. Chem., 17, 3393 (2005).CrossRefGoogle Scholar
  26. 26.
    A. M. Márquez and J. F. Sanz, Appl. Surf. Sci., 238, 82 (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Ulsan Regional DivisionKorea Institute of Industrial Technology (KITECH)UlsanKorea
  2. 2.Department of Polymer Science and Chemical EngineeringPusan National UniversityBusanKorea
  3. 3.Department of Chemical & Biological EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations