Skip to main content
Log in

Influence of calcination temperature on the structure and properties of Al2O3 as support for Pd catalyst

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the influence of the calcination temperature on the structural properties of Al2O3 and how the resultant Al2O3 support affects the characteristics of Pd/Al2O3 catalysts. Al2O3 pretreated at different calcination temperatures ranging from 500 °C to 1,150 °C, was used as catalyst supports. The Pd/Al2O3 catalysts were prepared by a deposition-precipitation method using a pH 7.5 precursor solution. Characterization of the prepared Pd/Al2O3 catalysts was performed by X-ray diffraction (XRD), N2-physisorption, CO2-temperature programmed desorption (TPD), CO-chemisorption, and field emission-transmission electron microscopic (FE-TEM) analyses. The CO-chemisorption results showed that the Pd catalyst with the Al2O3 support calcined at 900 °C, Pd/Al2O3 (900), had the highest and most uniformly dispersed Pd particles, with a Pd dispersion of 29.8%. The results suggest that the particle size and distribution of Pd are related to the phase transition of Al2O3 and the ratio of isolated tetrahedral to condensed octahedral coordination sites (i.e., functional groups), where the tetrahedral sites coordinate more favorably with Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. M. Rao and G. S. Reddi, TrAC-Trends Anal. Chem., 19, 565 (2000).

    Article  CAS  Google Scholar 

  2. J. S. Kim, J. H. Baek, Y. B. Ry, S.-S. Hong and M. S. Lee, J. Nanosci. Nanotechnol., 15, 290 (2015).

    Article  CAS  Google Scholar 

  3. J. S. Kim, J.-W. Park, S.-S. Hong and M. S. Lee, Sci. Adv. Mater., 8, 1995 (2016).

    Article  CAS  Google Scholar 

  4. T. Shirai, H. Watanabe, M. Fuji and M. Takahashi, Annu. Rep. Adv. Ceram. Res. Cent. Nagoya Inst. Technol., 9, 23 (2009).

    Google Scholar 

  5. G. Paglia, C. E. Buckley, A. L. Rohl, R. D. Hart, K. Winter, A. J. Studer, B. A. Hunter and J. V. Hanna, Chem. Mater., 16, 220 (2004).

    Article  CAS  Google Scholar 

  6. M. F. Peintinger, M. J. Kratz and T. Bredow, J. Mater. Chem. A, 2, 13143 (2014).

    Article  CAS  Google Scholar 

  7. M. Haneda, M. Todo, Y. Nakamura and M. Hattori, Catal. Today, 281, 447 (2017).

    Article  CAS  Google Scholar 

  8. P. A. Carlsson, E. Fridell and M. Skoglundh, Catal. Lett., 115, 1 (2007).

    Article  CAS  Google Scholar 

  9. K. Pattamakomsan, K. Suriye, S. Dokjampa, N. Mongkolsiri, P. Praserthdam and J. Panpranot, Catal. Commun., 11, 311 (2010).

    Article  CAS  Google Scholar 

  10. S. Komhom, O. Mekasuwandumrong, P. Praserthdam and J. Panpranot, Catal. Commun., 10, 86 (2008).

    Article  CAS  Google Scholar 

  11. J. M. Saniger, Mater. Lett., 22, 109 (1995).

    Article  CAS  Google Scholar 

  12. Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu and C.-H. Yan, J. Am. Chem. Soc., 130, 3465 (2008).

    Article  CAS  Google Scholar 

  13. J. H. Kwak, C. H. F. Peden and J. Szanyi, J. Phys. Chem. C, 115, 12575 (2011).

    Article  CAS  Google Scholar 

  14. A. Amirsalari and S. Farjami Shayesteh, Superlattices Microstruct., 82, 507 (2013).

    Article  Google Scholar 

  15. O. B. Belskaya, I. G. Danilova, M. O. Kazakov, R. M. Mironenko, A. V. Lavrenov and V. a. Likholobov, ChemInform., 44, 149 (2013).

    Article  Google Scholar 

  16. P. Canton, G. Fagherazzi, M. Battagliarin, F. Menegazzo, F. Pinna and N. Pernicone, Langmuir., 18, 6530 (2002).

    Article  CAS  Google Scholar 

  17. Q. Wu, F. Zhang, J. Yang, Q. Li, B. Tu and D. Zhao, Micropor. Mesopor. Mater., 143, 406 (2011).

    Article  CAS  Google Scholar 

  18. D. Li, C. Wu, P. Tang and Y. Feng, Mater. Lett., 133, 278 (2014).

    Article  CAS  Google Scholar 

  19. J. Gangwar, B. K. Gupta, P. Kumar, S. K. Tripathi and A. K. Srivastava, Dalton Trans., 43, 17034 (2014).

    Article  CAS  Google Scholar 

  20. P. Tarte, Spectrochim. Acta Part A Mol. Spectrosc., 23, 2127 (1967).

    Article  CAS  Google Scholar 

  21. J. Gangwar, K. K. Dey, Komal, Praveen, S. K. Tripathi and A. K. Srivastava, Adv. Mater. Lett., 2, 402 (2011).

    Article  CAS  Google Scholar 

  22. J. Preudhomme and P. Tarte, Acta Part A Mol. Spectrosc., 27, 845 (1971).

    Article  CAS  Google Scholar 

  23. K. Ito, M. Ohshima, H. Kurokawa, K. Sugiyama and H. Kurokawa, Catal. Commun., 3, 527 (2002).

    Article  CAS  Google Scholar 

  24. I. Balint, A. Miyazaki and K. I. Aika, Chem. Mater., 13, 932 (2001).

    Article  CAS  Google Scholar 

  25. M. Trueba and S. P. Trasatti, Eur. J. Inorg. Chem., 17, 3393 (2005).

    Article  Google Scholar 

  26. A. M. Márquez and J. F. Sanz, Appl. Surf. Sci., 238, 82 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Won Park or Man Sig Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, M.Y., Kim, J.S., Park, DW. et al. Influence of calcination temperature on the structure and properties of Al2O3 as support for Pd catalyst. Korean J. Chem. Eng. 35, 1083–1088 (2018). https://doi.org/10.1007/s11814-018-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0015-y

Keywords

Navigation