Skip to main content

Advertisement

Log in

CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Gasification is generally considered as the most effective for low rank coal exploitation, and CO2 gasification offers the advantage of upgrading a greenhouse gas. Herein, the effects of alkali and alkaline earth metals on gasification of char derived from Zhundong low rank coal (R-char) were investigated using a thermo-gravimetric analyzer (TGA). Additionally, the characteristics of chars were analyzed by X-ray fluorescence (XRF) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the carbon conversion increases as the temperature and CO2 concentration increases. The R-char possesses a higher gasification rate and carbon conversion than the acid washing R-char (AR-char). It can be explained that the alkali and alkaline earth metals presence in coal char can remarkably facilitate the compound’s decomposition and make more char surface exposure to react during the gasification process. For the kinetic analysis, the volumetric reaction model reveals a proper description among the three models (VRM, RPM, SCM), and the R-char and AR-char presents a compensation effect in VRM. Besides, the detailed correlation of two chars is ln (k0)=0.10 E A −1.77 (R-char) and ln (k0)=0.10 E A −2.85 (AR-char), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. J. Wang, C. L. Fang, X. L. Guan, B. Pang and H. T. Ma, Appl. Energy, 136, 738 (2014).

    Article  Google Scholar 

  2. B. T. Zhao, W. W. Tao, M. Zhong, Y. X. Su and G. M. Cui, Renew Sust. Energy Rev., 65, 44 (2016).

    Article  CAS  Google Scholar 

  3. J. B. Li, M. M. Zhu, Z. Z. Zhang, K. Zhang, G. Q. Shen and D. K. Zhang, Fuel Process. Technol., 149, 176 (2016).

    Article  CAS  Google Scholar 

  4. M. M. Wang, J. S. Zhang, S. Y. Zhang, J. H. Wu and G. X. Yue, Korean J. Chem. Eng., 25(6), 1322 (2008).

    Article  CAS  Google Scholar 

  5. T. Joanne and B. Sankar, Chem. Eng. J., 285, 331 (2016).

    Article  Google Scholar 

  6. T. J. Kang, H. J. Park, H. Namkung, L. H. Xu, S. M. Fan and H. T. Kim, Korean J. Chem. Eng., 34(4), 1238 (2017).

    Article  CAS  Google Scholar 

  7. M. Q. Dimple, H. W. Wu and C. Z. Li, Fuel, 81, 143 (2002).

    Article  Google Scholar 

  8. H. W. Wu, M. Q. Dimple and C. Z. Li, Fuel, 81, 1033 (2002).

    Article  CAS  Google Scholar 

  9. L. Z. Ding, J. Zhou and Q. H. Guo, Fuel, 142, 134 (2015).

    Article  CAS  Google Scholar 

  10. P. L. Walker, S. Matsumoto and T. Hanzawa, Fuel, 62, 140 (1983).

    Article  CAS  Google Scholar 

  11. Y. H. Bai, S. H. Zhu, K. Luo, M.Q. Gao, L. J. Yan and F. Li, Appl. Therm. Eng., 112, 156 (2017).

    Article  CAS  Google Scholar 

  12. A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87, 943 (2006).

    Article  CAS  Google Scholar 

  13. A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87, 1037 (2006).

    Article  CAS  Google Scholar 

  14. A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87, 1051 (2006).

    Article  CAS  Google Scholar 

  15. H. Y. Park and D. H. Ahn, Korean J. Chem. Eng., 24(1), 24 (2007).

    Article  CAS  Google Scholar 

  16. R. Silbermann, A. Gomez, I. Gates and N. Mahinpey, Ind Eng Chem Res., 52, 14787 (2013).

    Article  CAS  Google Scholar 

  17. J. W. Kook, I. S. Gwak, Y. R. Gwak, M. W. Seo and S. H. Lee, Korean J. Chem. Eng., 34(12), 3092 (2017).

    Article  CAS  Google Scholar 

  18. S. Sawettaporn, K. Bunyakiat and B. Kitiyanan, Korean J. Chem. Eng., 26(4), 1009 (2009).

    Article  CAS  Google Scholar 

  19. M. Nader and G. Arturo, Chem. Eng. Sci., 148, 14 (2016).

    Article  Google Scholar 

  20. L. Liu and Q. X. Guo, Chem. Rev., 101, 673 (2001).

    Article  CAS  Google Scholar 

  21. H. W. Wu, X. J. Li, J. J. Hayashi, T. Chiba and C. Z. Li, Fuel, 84, 1221 (2005).

    Article  CAS  Google Scholar 

  22. E. L. K. Mui, W. H. Cheung, V. K. C. Lee and G. McKay, Waste Manage., 30, 821 (2010).

    Article  CAS  Google Scholar 

  23. G. C. Bond, Appl. Catal. A: Gen., 191, 23 (2000).

    Article  CAS  Google Scholar 

  24. L. Wu, Y. Qiao, B. Gui, C. Wang, J.Y. Xu, H. Yao and M. H. Xu, Energy Fuel, 26, 112 (2012).

    Article  Google Scholar 

  25. S. Liu, Y. Qiao, Z. L. Lu, B. Gui, M. M. Wei, Y. Yu and M. H. Xu, Energy Fuel, 28, 1911 (2014).

    Article  CAS  Google Scholar 

  26. Y. Qiao, L. Zhang, E. Binner, M. H. Xu and C. Z. Li, Fuel, 89, 3381 (2010).

    Article  CAS  Google Scholar 

  27. C. Sathe, Y. Y. Pang and C. Z. Li, Energy Fuel, 13, 748 (1999).

    Article  CAS  Google Scholar 

  28. J. Ochoa, M. C. Cassanello, P. R. Bonelli and A. L. Cukierman, Fuel Process. Technol., 74, 161 (2001).

    Article  CAS  Google Scholar 

  29. W. Huo, Z. J. Zhou, F. C. Wang, Y. F. Wang and G. S. Yu, Fuel, 131, 59 (2014).

    Article  CAS  Google Scholar 

  30. G. Skodras, G. Nenes and N. Zafeiriou, Appl. Therm. Eng., 74, 111 (2015).

    Article  CAS  Google Scholar 

  31. G. D. Micco, A. Nasjleti and A. E. Bohe, Fuel, 95, 537 (2012).

    Article  Google Scholar 

  32. A. N. Rollinson and M. K. Karmakar, Chem. Eng. Sci., 128, 82 (2015).

    Article  CAS  Google Scholar 

  33. D. M. Quyn, H. Wu, J. I. Hayashi and C. Z. Li, Fuel, 82, 587 (2003).

    Article  CAS  Google Scholar 

  34. D. M. Quyn, H. W. Wu, S. P. Bhattacharya and C. Z. Li, Fuel, 81, 151 (2002).

    Article  CAS  Google Scholar 

  35. R. J. Lang. Fuel, 65, 1324 (1986).

    Article  CAS  Google Scholar 

  36. P. J. van Eyk, P. J. Ashman, Z. T. Alwahabi and G. J. Nathan, Combust. Flame, 158(6), 1181 (2011).

    Article  Google Scholar 

  37. A. Kosminski, D. P. Ross and J. B. Agnew, Fuel Process. Technol., 87(11), 943 (2006).

    Article  CAS  Google Scholar 

  38. A. H. Clemens, L. F. Damiano and T. W. Matheson, Fuel, 77, 1017 (1988).

    Article  Google Scholar 

  39. T. W. Kwon, J. R. Kim, S. D. Kim and W. H. Park, Fuel, 68, 416 (1989).

    Article  CAS  Google Scholar 

  40. G. Aranda, A. J. Grootjes, C. M. Meijden, A. Drift, D. F. Gupta, R. R. Sonde, S. Poojari and C. B. Mitra, Fuel Process. Technol., 141, 16 (2016).

    Article  CAS  Google Scholar 

  41. C. D. Blasi, Prog. Energy Combust. Sci., 35, 121 (2009).

    Article  Google Scholar 

  42. K. Yip, E. Ng, C. Z. Li, J. I. Hayashi and H. W. Wu, P. Combust. Inst., 33, 1755 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guan, Y. & Zhang, K. CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char. Korean J. Chem. Eng. 35, 859–866 (2018). https://doi.org/10.1007/s11814-017-0357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0357-x

Keywords

Navigation