Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 984–993 | Cite as

Agomelatine co-crystals with resorcinol and hydroquinone: Preparation and characterization

  • Min-Jeong Lee
  • Nan-Hee Chun
  • Hyo-Cheol Kim
  • Moon-Jip Kim
  • Paul Kim
  • Min-Yong Cho
  • Guang Jin Choi
Separation Technology, Thermodynamics


We prepared and characterized co-crystals of the antidepressant drug agomelatine with pharmaceutically acceptable coformers for enhanced solubility. A novel agomelatine-resorcinol (AGO-RES, 2 : 1) co-crystal was synthesized and its crystal structure was confirmed via single crystal X-ray diffraction. The AGO-RES co-crystal structure was created through the O-H∙∙∙O and N-H∙∙∙O hydrogen bonding between the phenolic OH of RES and the amide group of AGO. The chemical structure of two AGO co-crystals was characterized by FT-IR and Raman spectroscopies, whereas the solution behavior was determined by the intrinsic dissolution rate. When tested in water, both AGORES and AGO-HYQ form-I co-crystals showed higher apparent solubility than pure AGO. But the resulting AGO solution in a supersaturated state partially precipitated into specific crystal forms of AGO. As anticipated, the intrinsic dissolution rate of AGO was substantially enhanced by the co-crystal forms, which signifies that the bioavailability of AGO can be increased via co-crystal formulation approach.


Co-crystal Agomelatine Resorcinol Hydroquinone Solubility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Prohens, R. Barbas, A. Portell, M. Font-Bardia, X. Alcobé and C. Puigjaner, Cryst. Growth Des., 16, 1063 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Vishweshwar, J. A. McMahon, J. A. Bis and M. J. Zaworotko, J. Pharm. Sci., 95, 499 (2006).CrossRefGoogle Scholar
  3. 3.
    N. J. Babu and A. Nangia, Cryst. Growth Des., 11, 2662 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Aitipamula, R. Banerjee, A. K. Bansal, K. Biradha, M. L. Cheney, A. R. Choudhury, G. R. Desiraju, A. G. Dikundwar, R. Dubey, N. Duggirala, P. P. Ghogale, S. Ghosh, P. K. Goswami, N. R. Goud, R. R. K. R. Jetti, P. Karpinski, P. Kaushik, D. Kumar, V. Kumar, B. Moulton, A. Mukherjee, G. Mukherjee, A. S. Myerson, V. Puri, A. Ramanan, T. Rajamannar, C. M. Reddy, N. Rodriguez-Hornedo, R. D. Rogers, T. N. G. Row, P. Sanphui, N. Shan, G. Shete, A. Singh, C. C. Sun, J. A. Swift, R. Thaimattam, T. S. Thakur, R. K. Thaper, S. P. Thomas, S. Tothadi, V. R. Vangala, N. Variankaval, P. Vishweshwar, D. R. Weyna and M. J. Zaworotko, Cryst. Growth Des., 12, 2147 (2012).CrossRefGoogle Scholar
  5. 5.
    US FDA, Guidance for Industry: Regulatory Classification of Pharmaceutical Co-crystals; pdf (2016).Google Scholar
  6. 6.
    US FDA, Guidance for Industry: Regulatory Classification of Pharmaceutical Co-crystals, pdf (2013).Google Scholar
  7. 7.
    US FDA. Generally Regarded as Safe, Scholar
  8. 8.
    US FDA. Everything Added to Food Stuff in the United States,, Scholar
  9. 9.
    J. F. Remenar, M. L. Peterson, P. W. Stephens, Z. Zhang, Y. Zimenkov and M. B. Hickey, Mol. Pharm., 4, 386 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Bak, A. Gore, E. Yanez, M. Stanton, S. Tufekcic, R. Syed, A. Akrami, M. Rose, S. Surapaneni, T. Bostick, A. King, S. Neervannan, D. Ostovic and A. Koparkar, J. Pharm. Sci., 97, 3942 (2008).CrossRefGoogle Scholar
  11. 11.
    M. B. Hickey, M. L. Peterson, L. A. Scoppettuolo, S. L. Morrisette, A. Vetter, H. Guzman, J. F. Remenar, Z. Zhang, M. D. Tawa, S. Haley, M. J. Zaworotko and O. Almarsson, Eur. J. Pharm. Biopharm., 67, 112 (2007).CrossRefGoogle Scholar
  12. 12.
    N. Schultheiss and A. Newman, Cryst. Growth Des., 9, 2950 (2009).CrossRefGoogle Scholar
  13. 13.
    M.-J. Lee, I.-C. Wang, M.-J. Kim, P. Kim, K.-H. Song, N.-H. Chun, H.-G. Park and G. J. Choi, Korean J. Chem. Eng., 32, 1910 (2015).CrossRefGoogle Scholar
  14. 14.
    K. Demyttenaere, Eur. Neuropsychopharmacol., 21, S703 (2011).CrossRefGoogle Scholar
  15. 15.
    C. de Bodinat, B. Guardiola-Lemaitre, E. Mocaër, P. Renard, C. Muñoz and M. J. Millan, Nat. Rev. Drug Discov., 9, 628 (2010).CrossRefGoogle Scholar
  16. 16.
    VALDOXAN®-Product Information. Scholar
  17. 17.
    S. L. Zheng, J. M. Chen, W. X. Zhang and T. B. Lu, Cryst. Growth Des., 11, 466 (2011).CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, L. Jiang and X. Mei, Pharm. Dev. Technol., 21, 196 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Yan, J. M. Chen, N. Geng and T. B. Lu, Cryst. Growth Des., 12, 2226 (2012).CrossRefGoogle Scholar
  20. 20.
    H. S. Yin, Q. M. Zhang, Y. L. Zhou, Q. Ma, T. Liu, L. H. Zhu and S.Y. Ai, Electrochim. Acta, 56, 2748 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Cherukuvada and A. Nangia, Chem. Commun., 50, 906 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Tata, D. Scalarone, M. Lazzari and O. Chiantore, Euro. Polymer J., 45, 2520 (2009).CrossRefGoogle Scholar
  23. 23.
    E. Lu, N. Rodriguez-Hornedo and R. Suryanarayanan, CrystEng-Comm., 10, 665 (2008).CrossRefGoogle Scholar
  24. 24.
    H. Yamashita, Y. Hirakura, M. Yuda, T. Teramura and K. Terada, Pharm Res., 30, 70 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Yamashita, Y. Hirakura, M. Yuda and K. Terada, Pharm Res., 31, 1946 (2014).CrossRefGoogle Scholar
  26. 26.
    Z. Zhou, H. M. Chan, H. H. Y. Sung, H. H. Y. Tong and Y. Zheng, Pharm Res., 33, 1030 (2016).CrossRefGoogle Scholar
  27. 27.
    T. Friščić and W. Jones, Cryst. Growth Des., 9, 1621 (2009).CrossRefGoogle Scholar
  28. 28.
    K. Chadwick, R. Davey and W. Cross, CrystEngComm., 9, 732 (2007).CrossRefGoogle Scholar
  29. 29.
    R. Tamura and M. Miyata, Advances in organic crystal chemistry: Comprehensive reviews, Springer Japan, Tokyo (2015).CrossRefGoogle Scholar
  30. 30.
    R. Kaur and T. N. G. Row, Cryst. Growth Des., 12, 2744 (2012).CrossRefGoogle Scholar
  31. 31.
    R. Kaur, S. Cherukuvada, P. B. Managutti and T. N. G. Row, CrystEngComm., 18, 3191 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Alhalaweh, S. George, A. Basavoju, S. L. Childs, S. A. A. Rizvic and S. P. Velaga, CrystEngComm., 14, 5078 (2012).CrossRefGoogle Scholar
  33. 33.
    M. A. Elbagerma, H. G. M. Edwards, T. Munshi and I. J. Scowen, CrystEngComm., 13, 1877 (2011).CrossRefGoogle Scholar
  34. 34.
    D. W. Mayo, F. A. Miller and R. W. Hannah, Course notes on the interpretation of infrared and Raman spectra, Wiley, New Jersey (2004).CrossRefGoogle Scholar
  35. 35.
    G. Socrates. Infrared and Raman characteristic group frequencies: Tables and charts, 3rd Ed., Wiley, New York (2001).Google Scholar
  36. 36.
    D. J. Good and N. Rodriguez-Hornedo, Cryst. Growth Des., 9, 2252 (2009).CrossRefGoogle Scholar
  37. 37.
    DrugBank-Agomelatine, Scholar
  38. 38.
    W. Du, Y. Zhou, Y. Gong and C. Zhao, Asian J. Pharm. Sci., 8, 181 (2013).CrossRefGoogle Scholar
  39. 39.
    R. Saha, S. Sengupta, S. K. Dey, I. M. Steele, A. Bhattacharyya, S. Biswas and S. Kumar, RSC Adv., 4, 49070 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Min-Jeong Lee
    • 1
  • Nan-Hee Chun
    • 2
  • Hyo-Cheol Kim
    • 3
  • Moon-Jip Kim
    • 3
  • Paul Kim
    • 4
  • Min-Yong Cho
    • 4
  • Guang Jin Choi
    • 4
    • 5
  1. 1.Crystallization and Particle Science, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science Technology and Research)SingaporeSingapore
  2. 2.Unimed Pharm Inc.Asan, ChungnamKorea
  3. 3.Department of PhysicsSoonchunhyang UniversityAsan, ChungnamKorea
  4. 4.Department of Pharmaceutical EngineeringSoonchunhyang UniversityAsan, ChungnamKorea
  5. 5.Department of Medical ScienceSoonchunhyang UniversityAsan, ChungnamKorea

Personalised recommendations