Skip to main content
Log in

Intelligent control system for extractive distillation columns

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We developed and implemented an intelligent control system to be used in an extractive distillation column that produces anhydrous ethanol using ethylene glycol as solvent. The concept of artificial neural networks (ANN) was used to predict new setpoints after disturbances, and proved to be a fast and feasible solution. The developed control system receives data from temperature, flowrate and composition measurements of the azeotrope feed, and the ANN estimates the new set-points of the controllers to maintain 99.5 mol% of ethanol at the top and less than 0.1mol% at the bottom; feed composition was also estimated using an ANN. All ANN were trained to provide output data corresponding to an optimized operating condition. The results showed that the intelligent control system can predict a new operating condition for any disturbance in the column feed and presented superior performance when compared with the control system without ANN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Mansouri, M. Sales-Cruz, J. K. Huusom, J.M. Woodley and R. Gani, IFAC Papersonline, 49(7), 735 (2015).

    Article  Google Scholar 

  2. T. Mejdell and S. Skogestad, Ind. Eng. Chem. Res., 30, 2555 (1991).

    Article  CAS  Google Scholar 

  3. C. Zhongzhou, M. A. Henson, P. Belanger and L. Megan, IEEE Trans. Control Syst. Technol., 18(4), 811 (2010).

    Article  Google Scholar 

  4. I. A. Udugama, T. Munir, R. Kirkpatrick, B. R. Young and W. Yu, Comput. Aided Chem. Eng., 37, 1613 (2015).

    Article  Google Scholar 

  5. M. Kano, N. Showchaiya, S. Hasebe and I. Hashimoto, Control Eng. Pract., 11, 927 (2003).

    Article  Google Scholar 

  6. F. A. Kalbani and J. Zhang, in 9 th IFCH Symposium on Advanced Control of Chemical Processes, 48, 403 (2015).

    Google Scholar 

  7. J.M. Maciejowski, Predictive control with constraints, Prentice Hall, London (2002).

    Google Scholar 

  8. S. J. Qin and T. A. Badgwell, Control Eng. Pract., 11, 733 (2003).

    Article  Google Scholar 

  9. N. Sharma and K. Singh, Chem. Eng. Process., 59, (2012).

  10. W. L Luyben, Process modeling, Simulation and control for chemical engineers, McGraw Hill, New York (1990).

    Google Scholar 

  11. P. Kittisupakorn, T. Charoenniyom and W. Daosud, Eng. J., 18, 145 (2014).

    Article  Google Scholar 

  12. S. Niamsuwan, P. Kittisupakorn and I. M. Mujtaba, Comput. Chem. Eng., 66, (2014).

  13. K. Konakom, P. Kittisupakorn and I.M. Mujtaba, Asia-Pac. J. Chem. Eng., 7, 361 (2012).

    Article  CAS  Google Scholar 

  14. C.H. Lu, C. C. Tsai, C. M. Liu and Y. H. Charng, Asia-Pac. J. Chem. Eng., 12, 680 (2010).

    Google Scholar 

  15. I. D. Gil, J. M. Gomez and G. Rodríguez, Comput. Aided Chem. Eng., 39, 129 (2012).

    Article  CAS  Google Scholar 

  16. W. B. Ramos, M. F. de Figueirêdo, K. D. Brito, S. Ciannella, L. G. S. Vasconcelos and R. P. Brito, Ind. Eng. Chem. Res., 55, 11315 (2016).

    Article  CAS  Google Scholar 

  17. L. Fortuna, S. Graziani and M. Xibilia, Control Eng. Pract., 13, 499 (2005).

    Article  Google Scholar 

  18. E. Zamprogna, M. Barolo and D. Seborg, J. Process Control, 15, 39 (2005).

    Article  CAS  Google Scholar 

  19. M. Dias, A. Ensinas, S. Nebra, R. Maciel Filho, C. Rossell and M. Wolf, Chem. Eng. Res. Des., 87, 1206 (2009).

    Article  CAS  Google Scholar 

  20. A. Meirelles and S. Weiss, J. Chem. Technol. Biotechnol., 56, 181 (1992).

    Google Scholar 

  21. M. F. Figueirêdo, W.B. Ramos, K. D. Brito and R. P. Brito, Comput. Aided Chem. Eng., 202, 1607 (2015).

    Google Scholar 

  22. T. L. Junqueira, M. O. S. Dias, M. Wolf-Maciel, R. Maciel Filho and C. E. V. Rossell, in 9 th Distillation & Absorption Conference, Eindhoven, The Netherlands, 521 (2010).

  23. W. L. Luyben, Distillation design and control using Aspen simulation, John Wiley & Sons, New Jersey (2013).

    Book  Google Scholar 

  24. S. Arifin and I. L. Chien, Ind. Eng. Chem. Res., 47, 790 (2008).

    Article  CAS  Google Scholar 

  25. W. L. Luyben, Plantwide dynamic simulators in chemical processing and control, Marcel Dekker, New York (2002).

    Google Scholar 

  26. B. D. Tyreus and W. L. Luyben, Ind. Eng. Chem. Res., 31, 2625 (1993).

    Article  Google Scholar 

  27. S. Haykin, Neural networks and learning machines, Pearson, New Jersey (2009).

    Google Scholar 

  28. L. Fausset, Fundamentals of neural networks: Architectures, algorithms, and applications, Prentice Hall, New Jersey (1994).

    Google Scholar 

  29. I. Morsi and L. M. El-Din, Measurement, 47, (2014).

  30. O. Nerrand, P. Roussel-Ragot, L. Personnaz and G. Dreyfus, Neural Comput., 5, 165 (1993).

    Article  Google Scholar 

  31. J. L. Elman, Cognit. Sci., 14, 179 (1990).

    Article  Google Scholar 

  32. D. W. Marquardt, SIAM J. Appl. Math., 11, 431 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Brandão Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Neves, T.G., Ramos, W.B., de Farias Neto, G.W. et al. Intelligent control system for extractive distillation columns. Korean J. Chem. Eng. 35, 826–834 (2018). https://doi.org/10.1007/s11814-017-0346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0346-0

Keywords

Navigation