Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 926–940 | Cite as

Plantwide design for high-purity formic acid reactive distillation process with dividing wall column and external heat integration arrangements

  • Felicia Januarlia Novita
  • Hao-Yeh Lee
  • Moonyong Lee
Separation Technology, Thermodynamics

Abstract

We assessed eight configurations by implementing a dividing wall column (DWC) arrangement and an external heat integration (HI) arrangement for the reduction of energy consumption in the high-purity formic acid (FA) production process. At first, a patented high-purity FA production configuration was adopted and several main process variables were optimized. The optimal configuration was considered the base case for further investigation. The DWC arrangement was applied in the base case configuration to overcome the remixing phenomenon. Next, the external HI arrangement was implemented in those configurations. The simulation results showed that the non-reactive upper DWC between columns C2 and C3 with the HI configuration was the best configuration that provided 46.9% energy saving compared to base case configuration.

Keywords

Reactive Distillation Dividing Wall Column External Heat Integration Energy Efficiency Formic Acid Production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ihs.com, 2013, Formic acid chemical economics handbook, [online] Available from: http://www.ihs.com/products/formic-acid-chemical-economics-handbook.html (Accessed 26.06.16).Google Scholar
  2. 2.
    Marketsandmarkets.com, 2016, Formic acid market worth $618,808.7 Thousand by 2019, [Online] Available from: http://www. marketsandmarkets.com/PressReleases/formic-acid.asp (Accessed 26.06.2016).Google Scholar
  3. 3.
    J. D. Leonard, US Patent, 4,299,981 (1981).Google Scholar
  4. 4.
    H. P. Huang, M. J. Lee, H. Y. Lee and J. H. Chen, US Patent, 0123157 A1 (2012).Google Scholar
  5. 5.
    C. Tsouris and J. V. Porcelli, Chem. Eng. Prog., 99, 50 (2003).Google Scholar
  6. 6.
    F. J. Novita, H. Y. Lee and M. Lee, Chem. Eng. Processing: Process Intensification, 97, 144 (2015).CrossRefGoogle Scholar
  7. 7.
    M. M. Sharma and S. M. Mahajani, in Reactive distillation: status and future directions, K. Sundmacher, A. Kienle Eds., Wiley-VCH Verlag CmbH & Co., KGaA (2002).Google Scholar
  8. 8.
    H. Yoo, M. Binns, M. G. Jang, H. Cho and J. K. Kim. Korean J. Chem. Eng., 33, 405 (2016).CrossRefGoogle Scholar
  9. 9.
    S. H. Lee, M. Shamsuzzoha, M. Han, Y. H. Kim and M. Lee, Korean J. Chem. Eng., 28, 348 (2011).CrossRefGoogle Scholar
  10. 10.
    N. V. D. Long and M. Lee, Korean J. Chem. Eng., 29, 567 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Y. Kim, D. M. Kim and B. Lee. Korean J. Chem. Eng., 34, 1310 (2017).CrossRefGoogle Scholar
  12. 12.
    J. A. Caballero and I. E. Grossmann, Ind. Eng. Chem. Res., 45, 8454 (2006).CrossRefGoogle Scholar
  13. 13.
    M. A. Schultz, D. G. Stewart, J. M. Harris, S. T. Rosenblum, M. S. Shakur and D. E. O’Brien, Reactions and Separations (2002), https:/www.cepmagazine.org.Google Scholar
  14. 14.
    I. Mueller and E. Y. Kenig, Ind. Eng. Chem. Res., 46, 3709 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Bumbac, A. E. Plesu and V. Plesu, 17th European symposium on computer aided process engineering-ESCAPE17 (2007).Google Scholar
  16. 16.
    F. J. Novita, H. Y. Lee and M. Lee, Ind. Eng. Chem. Res., 56, 7037 (2017).CrossRefGoogle Scholar
  17. 17.
    W. Luyben, Distillation design and control using aspen simulation, Wiley, Hoboken, NJ (2006).CrossRefGoogle Scholar
  18. 18.
    L. Bai, Y. L. Zhao, Y. Q. Hu, B. Zhong and S. Y. Peng, J. Nat. Gas Chem., 5, 229 (1996).Google Scholar
  19. 19.
    C. X. Wang, J. Chem. Eng., 6, 898 (2006).Google Scholar
  20. 20.
    J. Polak and B. C. Y. Lu, J. Chem. Thermodyn, 4, 469 (1972).CrossRefGoogle Scholar
  21. 21.
    A. Reichl, U. Daiminger, A. Schmidt, M. Davies, U. Hoffmann, C. Brinkmeier, C. Reder and W. Marquardt, Fluid Phase Equilib., 153, 113 (1998).CrossRefGoogle Scholar
  22. 22.
    J. Zeng, Z. Y. Zhu and W. L. Hu, Nat. Gas Chem. Ind., 6, 56 (2000) (in Chinese).Google Scholar
  23. 23.
    T. Ito and F. Yoshida, J. Chem. Eng. Data, 8, 315 (1963).CrossRefGoogle Scholar
  24. 24.
    T. Pöpken, L. Götze and J. Gmehling, Ind. Eng. Chem. Res., 39, 2601 (2000).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringYeungnam UniversityDae-dongKorea
  2. 2.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations