Skip to main content

Advertisement

Log in

Plantwide design for high-purity formic acid reactive distillation process with dividing wall column and external heat integration arrangements

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We assessed eight configurations by implementing a dividing wall column (DWC) arrangement and an external heat integration (HI) arrangement for the reduction of energy consumption in the high-purity formic acid (FA) production process. At first, a patented high-purity FA production configuration was adopted and several main process variables were optimized. The optimal configuration was considered the base case for further investigation. The DWC arrangement was applied in the base case configuration to overcome the remixing phenomenon. Next, the external HI arrangement was implemented in those configurations. The simulation results showed that the non-reactive upper DWC between columns C2 and C3 with the HI configuration was the best configuration that provided 46.9% energy saving compared to base case configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ihs.com, 2013, Formic acid chemical economics handbook, [online] Available from: http://www.ihs.com/products/formic-acid-chemical-economics-handbook.html (Accessed 26.06.16).

    Google Scholar 

  2. Marketsandmarkets.com, 2016, Formic acid market worth $618,808.7 Thousand by 2019, [Online] Available from: http://www. marketsandmarkets.com/PressReleases/formic-acid.asp (Accessed 26.06.2016).

    Google Scholar 

  3. J. D. Leonard, US Patent, 4,299,981 (1981).

    Google Scholar 

  4. H. P. Huang, M. J. Lee, H. Y. Lee and J. H. Chen, US Patent, 0123157 A1 (2012).

    Google Scholar 

  5. C. Tsouris and J. V. Porcelli, Chem. Eng. Prog., 99, 50 (2003).

    CAS  Google Scholar 

  6. F. J. Novita, H. Y. Lee and M. Lee, Chem. Eng. Processing: Process Intensification, 97, 144 (2015).

    Article  CAS  Google Scholar 

  7. M. M. Sharma and S. M. Mahajani, in Reactive distillation: status and future directions, K. Sundmacher, A. Kienle Eds., Wiley-VCH Verlag CmbH & Co., KGaA (2002).

  8. H. Yoo, M. Binns, M. G. Jang, H. Cho and J. K. Kim. Korean J. Chem. Eng., 33, 405 (2016).

    Article  CAS  Google Scholar 

  9. S. H. Lee, M. Shamsuzzoha, M. Han, Y. H. Kim and M. Lee, Korean J. Chem. Eng., 28, 348 (2011).

    Article  CAS  Google Scholar 

  10. N. V. D. Long and M. Lee, Korean J. Chem. Eng., 29, 567 (2012).

    Article  Google Scholar 

  11. S. Y. Kim, D. M. Kim and B. Lee. Korean J. Chem. Eng., 34, 1310 (2017).

    Article  CAS  Google Scholar 

  12. J. A. Caballero and I. E. Grossmann, Ind. Eng. Chem. Res., 45, 8454 (2006).

    Article  CAS  Google Scholar 

  13. M. A. Schultz, D. G. Stewart, J. M. Harris, S. T. Rosenblum, M. S. Shakur and D. E. O’Brien, Reactions and Separations (2002), https:/www.cepmagazine.org.

    Google Scholar 

  14. I. Mueller and E. Y. Kenig, Ind. Eng. Chem. Res., 46, 3709 (2007).

    Article  CAS  Google Scholar 

  15. G. Bumbac, A. E. Plesu and V. Plesu, 17th European symposium on computer aided process engineering-ESCAPE17 (2007).

    Google Scholar 

  16. F. J. Novita, H. Y. Lee and M. Lee, Ind. Eng. Chem. Res., 56, 7037 (2017).

    Article  CAS  Google Scholar 

  17. W. Luyben, Distillation design and control using aspen simulation, Wiley, Hoboken, NJ (2006).

    Book  Google Scholar 

  18. L. Bai, Y. L. Zhao, Y. Q. Hu, B. Zhong and S. Y. Peng, J. Nat. Gas Chem., 5, 229 (1996).

    CAS  Google Scholar 

  19. C. X. Wang, J. Chem. Eng., 6, 898 (2006).

    Google Scholar 

  20. J. Polak and B. C. Y. Lu, J. Chem. Thermodyn, 4, 469 (1972).

    Article  CAS  Google Scholar 

  21. A. Reichl, U. Daiminger, A. Schmidt, M. Davies, U. Hoffmann, C. Brinkmeier, C. Reder and W. Marquardt, Fluid Phase Equilib., 153, 113 (1998).

    Article  CAS  Google Scholar 

  22. J. Zeng, Z. Y. Zhu and W. L. Hu, Nat. Gas Chem. Ind., 6, 56 (2000) (in Chinese).

  23. T. Ito and F. Yoshida, J. Chem. Eng. Data, 8, 315 (1963).

    Article  CAS  Google Scholar 

  24. T. Pöpken, L. Götze and J. Gmehling, Ind. Eng. Chem. Res., 39, 2601 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Yeh Lee or Moonyong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novita, F.J., Lee, HY. & Lee, M. Plantwide design for high-purity formic acid reactive distillation process with dividing wall column and external heat integration arrangements. Korean J. Chem. Eng. 35, 926–940 (2018). https://doi.org/10.1007/s11814-017-0342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0342-4

Keywords

Navigation