Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 900–908 | Cite as

Treatment of penicillin with supercritical water oxidation: Experimental study of combined ReaxFF molecular dynamics

Environmental Engineering
  • 26 Downloads

Abstract

Supercritical water oxidation (SCWO) of penicillin (PCN) was investigated under different operating conditions. The chemical oxygen demand (COD) removal rate could reach 99.4% at 400 °C, 24 MPa, 1min and oxidation coefficient (OC) of 2. Experimental results showed that COD removal had no significant dependence on temperature and pressure variations. By contrast, COD removal could be significantly promoted with OC increasing from 0 to 2.0, but the effect was negligible as the OC further increased; similarly, longer residence time than a definite value seemed to contribute little to COD removal. Initial and deeper degradation pathways of penicillin were proposed based on the reactive force field (ReaxFF) molecular dynamics (MD) simulations. By tracing the evolution of intermediates, the migration routes of S and N during the SCWO process were obtained with H2S and NO2 produced as the corresponding products. Simulation results showed that SCW and oxidant not only accelerated the degradation by producing highly reactive radicals or molecules, but also participated in reactions by serving as H and O sources. Moreover, catalysis of water clusters in C-heteroatom bond cleavage was also observed.

Keywords

Penicillin Supercritical Water Oxidation ReaxFF Molecular Dynamics Simulation Degradation Pathway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2017_341_MOESM1_ESM.pdf (233 kb)
Treatment of penicillin with supercritical water oxidation: Experimental study of combined ReaxFF molecular dynamics

References

  1. 1.
    I. Michael, L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merli, T. Schwartz, C. Dagot and D. Fatta-Kassinos, Water Res., 47, 957 (2013).CrossRefGoogle Scholar
  2. 2.
    J. L. Martinez, Environ. Pollut., 157, 2893 (2009).CrossRefGoogle Scholar
  3. 3.
    K. Kümmerer, Chemosphere, 75, 417 (2009).CrossRefGoogle Scholar
  4. 4.
    C. Ding and J. He, Appl. Microbiol. Biotechnol., 87, 925 (2010).CrossRefGoogle Scholar
  5. 5.
    J. M. Cha, S. Yang and K. H. Carlson, J. Chromatogr. A., 1115, 46 (2006).CrossRefGoogle Scholar
  6. 6.
    J. Altmann, A. S. Ruhl, F. Zietzschmann and M. Jekel, Water Res., 55, 185 (2014).CrossRefGoogle Scholar
  7. 7.
    H.R. Pouretedal and N. Sadegh, J. Water Process Eng., 1, 64 (2014).CrossRefGoogle Scholar
  8. 8.
    E. A. Serna-Galvis, J. Silva-Agredo, A. L. Giraldo-Aguirre, O. A. Flórez-Acosta and R. A. Torres-Palma, Ultrason. Sonochem., 31, 276 (2016).CrossRefGoogle Scholar
  9. 9.
    A. L. Giraldo-Aguirre, E. D. Erazo-Erazo, O. A. Flórez-Acosta, E. A. Serna-Galvis and R. A. Torres-Palma, J. Photochem. Photobiol., A., 311, 95 (2015).CrossRefGoogle Scholar
  10. 10.
    W. H. Glaze, J.-W. Kang and D. H. Chapin, Ozone Sci. Eng., 9, 335 (1987).CrossRefGoogle Scholar
  11. 11.
    E.A. Serna-Galvis, J. Silva-Agredo, A. L. Giraldo, O. A. Flórez-Acosta and R. A. Torres-Palma, Sci. Total Environ., 541, 1431 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Villegas-Guzman, J. Silva-Agredo, O. Florez, A. L. Giraldo-Aguirre, C. Pulgarin and R. A. Torres-Palma, J. Environ. Manage., 190, 72 (2017).CrossRefGoogle Scholar
  13. 13.
    L. Qian, S. Wang, D. Xu, Y. Guo, X. Tang and L. Wang, Water Res., 89, 118 (2016).CrossRefGoogle Scholar
  14. 14.
    O. Ö. Söüt and M. Akgün, J. Chem. Technol. Biotechnol., 85, 640 (2010).CrossRefGoogle Scholar
  15. 15.
    V. Vadillo, M. B. García-Jarana, J. Sánchez-Oneto, J. R. Portela and E. J. M. de la Ossa, J. Chem. Technol. Biotechnol., 86, 1049 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Loppinet-Serani, C. Aymonierand F. Cansell, J. Chem. Technol. Biotechnol., 85, 583 (2010).CrossRefGoogle Scholar
  17. 17.
    B. Kayan and B. Gözmen, J. Hazard. Mater., 201, 100 (2012).CrossRefGoogle Scholar
  18. 18.
    M. M. Islam, C. Zou, A. C. T. van Duin and S. Raman, Phys. Chem. Chem. Phys., 18, 761 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Takahashi, S. Hisaoka and T. Nitta, Chem. Phys. Lett., 363, 80 (2002).CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, J. Zhang, L. Zhao and C. Sheng, Energy Fuels, 24, 95 (2010).CrossRefGoogle Scholar
  21. 21.
    T. Honma and H. Inomata, J. Supercrit. Fluids, 90, 1 (2014).CrossRefGoogle Scholar
  22. 22.
    A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard, J. Phys. Chem. A., 105, 9396 (2001).CrossRefGoogle Scholar
  23. 23.
    Y. Han, D. Jiang, J. Zhang, W. Li, Z. Gan and J. Gu, FRONT. Chem. Sci. Eng., 1, 16 (2016).CrossRefGoogle Scholar
  24. 24.
    J. Zhang, X. Weng, Y. Han, W. Li, J. Cheng, Z. Gan and J. Gu, Fuel, 108, 682 (2013).CrossRefGoogle Scholar
  25. 25.
    J. Zhang, J. Gu, Y. Han, W. Li, Z. Gan and J. Gu, Ind. Eng. Chem. Res., 54, 1251 (2015).CrossRefGoogle Scholar
  26. 26.
    J. Zhang, J. Gu, Y. Han, W. Li, Z. Gan and J. Gu, J. Mol. Model., 21, 54 (2015).CrossRefGoogle Scholar
  27. 27.
    D. Jiang, Y. Wang, M. Zhang, J. Zhang, W. Li and Y. Han, Int. J. Hydrogen Energy, 15, 9667 (2017).CrossRefGoogle Scholar
  28. 28.
    E. Yabalak, H. A. Döndaş and A. M. Gizir, J. Environ. Sci. Health, Part A., 3, 210 (2017).CrossRefGoogle Scholar
  29. 29.
    E. Salmon, A. C. T. van Duin, F. Lorant, P.-M. Marquaire and W. A. Goddard III, Org. Geochem., 40, 1195 (2009).CrossRefGoogle Scholar
  30. 30.
    B. Chen, X.-Y. Wei, Z.-S. Yang, C. Liu, X. Fan, Y. Qing and Z.-M. Zong, Energy Fuels, 26, 984 (2012).CrossRefGoogle Scholar
  31. 31.
    H. Wang, H. A. G. Stern, D. Chakraborty, H. Bai, V. DiFilippo, J. S. Goela, M. A. Pickering and J. D. Gale, Ind. Eng. Chem. Res., 52, 15270 (2013).CrossRefGoogle Scholar
  32. 32.
    P. E. Savage, Chem. Rev., 99, 603 (1999).CrossRefGoogle Scholar
  33. 33.
    S. Wang, Y. Guo, L. Wang, Y. Wang, D. Xu and H. Ma, Fuel Process. Technol., 92, 291 (2011).CrossRefGoogle Scholar
  34. 34.
    S. Gopalan and P. E. Savage, AIChE J., 41, 1864 (1995).CrossRefGoogle Scholar
  35. 35.
    K. Minok, W. K. Lee and C. H. Lee, Chem. Eng. Sci., 52, 1201 (1997).CrossRefGoogle Scholar
  36. 36.
    L. Li, P. Chen and E. F. Gloyna, AIChE J., 37, 1687 (1991).CrossRefGoogle Scholar
  37. 37.
    D.-S. Lee, E. F. Gloyna and L. Li, J. Supercrit. Fluids, 3, 249 (1990).CrossRefGoogle Scholar
  38. 38.
    N. Segond, Y. Matsumura and K. Yamamoto, Ind. Eng. Chem. Res., 41, 6020 (2002).CrossRefGoogle Scholar
  39. 39.
    N. Akiya and P. E. Savage, Chem. Rev., 102, 2725 (2002).CrossRefGoogle Scholar
  40. 40.
    W.-J. Gong, F. Li and D.-L. Xi, Water Environ. Res., 80, 186 (2008).CrossRefGoogle Scholar
  41. 41.
    S. Gopalan and P. E. Savage, AIChE J., 41, 1864 (1995).CrossRefGoogle Scholar
  42. 42.
    J. L. DiNaro, J. W. Tester, J. B. Howard and K. C. Swallow, AIChE J., 46, 2274 (2000).CrossRefGoogle Scholar
  43. 43.
    S. F. Rice and E. Croiset, Ind. Eng. Chem. Res., 40, 86 (2001).CrossRefGoogle Scholar
  44. 44.
    P. E. Savage, J. Yu, N. Stylski and E. E. Brock, J. Supercrit. Fluids, 12, 141 (1998).CrossRefGoogle Scholar
  45. 45.
    H. Ma and J. Ma, J. Chem. Phys., 135, 054504 (2011).CrossRefGoogle Scholar
  46. 46.
    J. Zhang, X. Weng, Y. Han, W. Li, Z. Gan and J. Gu, J. Energy Chem., 22, 459 (2013).CrossRefGoogle Scholar
  47. 47.
    E. A. Serna-Galvis, J. Silva-Agredo, A. L. Giraldo, O. A. Flórez and R. A. Torres-Palma, Chem. Eng. J., 284, 953 (2016).CrossRefGoogle Scholar
  48. 48.
    B. Shukla, A. Susa, A. Miyoshi and M. Koshi, J. Phys. Chem. A., 112, 2362 (2008).CrossRefGoogle Scholar
  49. 49.
    A. Comandini, T. Malewicki and K. Brezinsky, J. Phys. Chem. A., 116, 2409 (2012).CrossRefGoogle Scholar
  50. 50.
    Y. Gong, Y. Guo, S. Wang and W. Song, Water Res., 100, 116 (2016).CrossRefGoogle Scholar
  51. 51.
    T. Fujii, R. Hayashi, S.-i. Kawasaki, A. Suzuki and Y. Oshima, J. Supercrit. Fluids, 58, 142 (2011).CrossRefGoogle Scholar
  52. 52.
    Y. Kida, C. A. Class, A. J. Concepcion, M.T. Timko and W.H. Green, Phys. Chem. Chem. Phys., 16, 9220 (2014).CrossRefGoogle Scholar
  53. 53.
    N. Meng, D. Jiang, Y. Liu, Z. Gao, Y. Cao, J. Zhang, J. Gu and Y. Han, Fuel, 186, 394 (2016).CrossRefGoogle Scholar
  54. 54.
    J. Wang, F. He, Y. Li and H. Sun, RSC Adv., 6, 93260 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin UniversityTianjinChina
  3. 3.Department of Civil and Environmental EngineeringCarleton UniversityOttawaCanada

Personalised recommendations