Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 909–921 | Cite as

Comparison of electrocoagulation, peroxi-electrocoagulation and peroxi-coagulation processes for treatment of simulated purified terephthalic acid wastewater: Optimization, sludge and kinetic analysis

  • Vishal Kumar Sandhwar
  • Basheshwar Prasad
Environmental Engineering


This study mainly focuses on a comparative study of electrocoagulation (EC), peroxi-electrocoagulation (PEC) and peroxi-coagulation (PC) processes for the treatment of aqueous solution containing major toxic components of purified terephthalic acid wastewater: benzoic acid (BA), terephthalic acid (TPA), para-toluic acid (p-TA) and phthalic acid (PA). The solution was initially treated by acid treatment method at various pH (2-4) and temperature (15-60 °C). The supernatant was further remediated by EC, PEC and PC methods independently. Process variables such as pH (4-12) and pH (1-5), current density (45.72-228.60 A/m2), electrolyte concentration (0.04-0.08 mol/L), electrode gap (1-3 cm), H2O2 concentration (600-1,000 mg/L) and reaction time (20-100 min) during EC, PEC and PC treatment were effectively optimized through central composite design under Design Expert software. Maximum COD removal of 60.76%, 73.91%, 66.68% with energy consumption (kWh/kg COD removed) of 95.81, 49.58, 69.26 was obtained by EC, PEC and PC treatments, respectively, at optimum conditions. Electrochemical methods were compared by removal capacities, consumption of energy, operating cost, degradation kinetics and sludge characteristics. PEC treatment was found most effective among EC, PEC and PC processes due to its highest removal capacity and lowest energy consumption features.


Purified Terephthalic Acid Electrochemical Treatment Response Surface Methodology Optimization Kinetic Study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Macarie, A. Noyola and J. P. Guyot, Water Sci. Technol., 25, 223 (1992).Google Scholar
  2. 2.
    S. S. Cheng, C. Y. Ho and J. H. Wu, Water Sci. Technol., 36, 73 (1997).Google Scholar
  3. 3.
    R. Kleerebezem, J. Mortier, L. W. H. Pol and G. Lettinga, Water Sci. Technol., 36, 237 (1997).Google Scholar
  4. 4.
    R. B. Meyer, A. Fischbein, K. Rosenman, Y. Lerman, D. E. Drayer and M. M. Reidenberg, Am. J. Med., 76, 989 (1984).CrossRefGoogle Scholar
  5. 5.
    L. Cui. Y. Shi, G. Dai, H. Pan, J. Chen, L. Song, S. Wang, H. C. Chang, H. Sheng and X. Wang, Toxicol. Appl. Pharmcol., 210, 24 (2006).CrossRefGoogle Scholar
  6. 6.
    X. X. Zhang, S. Sun, Y. Zhang, B. Wu, Z. Y. Zhang, B. Liu, L. Y. Yang and S. P. Cheng, J. Hazard. Mater., 176, 300 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Matsumoto, M. Hirata-Koizumi and M. Ema, Regul. Toxicol. Pharm., 50, 37 (2008).CrossRefGoogle Scholar
  8. 8.
    F. Fu, Q. Wang and B. Tang, J. Hazard. Mater., 174, 17 (2010).CrossRefGoogle Scholar
  9. 9.
    J.P. Kushwaha, V. C. Srivastava and I. D. Mall, Sep. Purif. Technol., 76, 198 (2010).CrossRefGoogle Scholar
  10. 10.
    P. Canizares, A. Beteta, C. Saez, L. Rodríguez and M. A. Rodrigo, Chemosphere, 72, 1080 (2011).CrossRefGoogle Scholar
  11. 11.
    A. J. C. d. Silva, E. V. d. Santos, C. C. d. O. Morais, C. A. Martínez-Huitle and S. S. L. Castro, Chem. Eng. J., 233, 47 (2013).CrossRefGoogle Scholar
  12. 12.
    V. K. Sandhwar and B. Prasad, Korean J. Chem. Eng., 34, 1062 (2017).CrossRefGoogle Scholar
  13. 13.
    K. K Garg and B. Prasad, J. Environ. Chem. Eng., 3, 1731 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Mahesh, K. K. Garg, V. C. Srivastava, I. M. Mishra, B. Prasad and I. D. Mall, RSC Adv., 6, 16223 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Duan and J. Gregory, Adv. Colloid Interface Sci., 100, 475 (2003).CrossRefGoogle Scholar
  16. 16.
    P. Canizares, P. Martínez, C. Jiménez, J. Lobato and M. A. Rodrigo, Ind. Eng. Chem. Res., 45, 8749 (2006).CrossRefGoogle Scholar
  17. 17.
    G. Chen, Sep. Purif. Technol., 38, 11 (2004).CrossRefGoogle Scholar
  18. 18.
    W. P. Ting, M. C. Lu and Y. H. Huang, J. Hazard. Mater., 156, 421 (2008).CrossRefGoogle Scholar
  19. 19.
    E. Brillas, I. Sirés and M. A. Oturan, Chemical Reviews, 109, 6570 (2009).CrossRefGoogle Scholar
  20. 20.
    I. Sirés and E. Brillas, Environment International, 40, 212 (2012).CrossRefGoogle Scholar
  21. 21.
    I. A. Sengil and M. Ozacar, J. Hazard. Mater., 137, 1197 (2006).CrossRefGoogle Scholar
  22. 22.
    U. Kurt, O. Apaydin and M. T. Gonullu, J. Hazard. Mater., 143, 33 (2007).CrossRefGoogle Scholar
  23. 23.
    I. Losito, A. Amorisco and F. Palmisano, Appl. Catal. B: Environ., 79, 224 (2008).CrossRefGoogle Scholar
  24. 24.
    C. Badellino, C. A. Rodrigues and R. Bertazzoli, J. Hazard. Mater., 137, 856 (2006).CrossRefGoogle Scholar
  25. 25.
    H. Zhang, C. Fei, D. Zhang and F. Tang, J. Hazard. Mater., 145, 227 (2007).CrossRefGoogle Scholar
  26. 26.
    H. Zhang, D. Zhang and J. Zhou, J. Hazard. Mater., 135, 106 (2006).CrossRefGoogle Scholar
  27. 27.
    E. Neyens and J. Baeyens, J. Hazard. Mater., 98, 33 (2003).CrossRefGoogle Scholar
  28. 28.
    J. Ma, W. Song, C. Chen, W. Ma, J. Zhao and Y. Tang, Environ. Sci. Technol., 395, 5810 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Verma, B. Prasad and I. M. Mishra, Ind. Eng. Chem. Res., 50, 5352 (2011).CrossRefGoogle Scholar
  30. 30.
    S. K. F. Marashi, H. R. Kariminia and I. S. P. Savizi, Biotechnol. Lett., 35, 197 (2013).CrossRefGoogle Scholar
  31. 31.
    M. V. Anand, V. C. Srivastava, S. Singh, R. Bhatnagar and I. D. Mall, J. Taiwan Inst. Chem. Eng., 45, 908 (2014).CrossRefGoogle Scholar
  32. 32.
    V. K. Sandhwar and B. Prasad, Process Saf. Environ. Prot., 107, 269 (2017).CrossRefGoogle Scholar
  33. 33.
    K. K. Garg and B. Prasad, J. Environ. Chem. Eng., 3, 1731 (2015).CrossRefGoogle Scholar
  34. 34.
    V. K. Sandhwar and B. Prasad, J. Environ. Manage., 203, 476 (2017).CrossRefGoogle Scholar
  35. 35.
    APHA (American Public Health Association), AWWA (American Water Works Association), WPCF (Water Pollution Control Federation), APHA, Washington DC, U.S.A. (1995).Google Scholar
  36. 36.
    R. Thiruvenkatachari, T. O. Kwon and I. S. Moon, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 41, 1685 (2006).CrossRefGoogle Scholar
  37. 37.
    V. K. Sandhwar and B. Prasad, Water Conserv. Sci. Eng., 1, 257 (2017).CrossRefGoogle Scholar
  38. 38.
    K. K. Garg and B. Prasad, J. Taiwan Inst. Chem. Eng., 56, 122, (2015).CrossRefGoogle Scholar
  39. 39.
    V. K. Sandhwar and B. Prasad, J. Mol. Liq., 243, 519 (2017).CrossRefGoogle Scholar
  40. 40.
    T. Park, J. S. Lim, Y. Lee and S. Kim, J. Supercrit. Fluids, 26, 201 (2003).CrossRefGoogle Scholar
  41. 41.
    V. K. Sandhwar and B. Prasad, Journal of Water Process Engineering, DOI:10.1016/j.jwpe.2017.03.006.Google Scholar
  42. 42.
    K. K. Garg, B. Prasad and V. C. Srivastava, Sep. Purif. Technol., 128, 80 (2014).CrossRefGoogle Scholar
  43. 43.
    B. J. Thamer and A. F. Voigt, J. Phys. Chem., 56, 225 (1952).CrossRefGoogle Scholar
  44. 44.
    S. Verma, B. Prasad and I. M. Mishra, J. Hazard. Toxic Radioact. Waste., 18, 04014013 (2014).CrossRefGoogle Scholar
  45. 45.
    S. Farhadi, B. Aminzadeh, A. Torabian, V. Khatibikamal and M. A. Fard, J. Hazard. Mater., 219, 35 (2012).CrossRefGoogle Scholar
  46. 46.
    O. T. Can, M. Bayramoglu and M. Kobya, Ind. Eng. Chem. Res., 42, 3391 (2003).CrossRefGoogle Scholar
  47. 47.
    M. Kallel, C. Belaid, R. Boussahel, M. Ksibi, A. Montiel and B. Elleuch, J. Hazard. Mater., 163, 550 (2009).CrossRefGoogle Scholar
  48. 48.
    R. J. Watts, M. K. Foget, S. H. Kong and A. L. Teel, J. Hazard. Mater., 69, 229 (1999).CrossRefGoogle Scholar
  49. 49.
    P. V. Nidheesh and R. Gandhimathi, Desalination, 299, 1 (2012).CrossRefGoogle Scholar
  50. 50.
    A. Maljaei, M. Arami and N. M. Mahmoodi, Desalination, 249, 1074 (2009).CrossRefGoogle Scholar
  51. 51.
    G. B. Raju, M. T. Karuppiah and S. S. Latha, Chem. Eng. J., 144, 51 (2008).CrossRefGoogle Scholar
  52. 52.
    C. Phalakornkule, S. Polgumhang, W. Tongdaung, B. Karakat and T. Nuyut, J. Environ. Manage., 91, 918 (2010).CrossRefGoogle Scholar
  53. 53.
    N. Mameri, A. R. Yeddou, H. Lounici, D. Belhocine, H. Grib and B. Bariou, Wat. Res., 32, 1604 (1998).CrossRefGoogle Scholar
  54. 54.
    N. Modirshahla, M. A. Behnajady and S. Mohammadi-Aghdam, J. Hazard. Mater., 154, 778 (2008).CrossRefGoogle Scholar
  55. 55.
    M. Azama, M. Bahram, S. Nouri and A. Naseri, J. Serb. Chem. Soc., 77, 235 (2012).CrossRefGoogle Scholar
  56. 56.
    H. Lee and M. Shoda, J. Hazard. Mater., 153, 1314 (2008).CrossRefGoogle Scholar
  57. 57.
    M. I. Badawy and M. E. M. Ali, J. Hazard. Mater., 136, 961 (2006).CrossRefGoogle Scholar
  58. 58.
    A.M. Joglekar and A. T. May, Cereal Food World, 32, 857 (1987).Google Scholar
  59. 59.
    J. P. Maran and S. Manikandan, Dyes Pigments, 95, 465 (2012).CrossRefGoogle Scholar
  60. 60.
    J. P. Maran, S. Manikandan and B. Priya, J. Food Sci. Technol., 51, 92 (2015).CrossRefGoogle Scholar
  61. 61.
    A. I. Khuri and J. A. Cornell, Marcel Dekker, New York, 152 (1996).Google Scholar
  62. 62.
    A. R. Khataee, M. Zarei and L. Moradkhannejhad, Desalination, 258, 112 (2010).CrossRefGoogle Scholar
  63. 63.
    S. Verma and R. K. Dutta, RSC Adv., 5, 77192 (2015).CrossRefGoogle Scholar
  64. 64.
    S. Verma and R. K. Dutta, J. Environ. Chem. Eng., 5, 4776 (2017).CrossRefGoogle Scholar
  65. 65.
    S. Verma and R. K. Dutta, J. Environ. Chem. Eng., 5, 4547 (2017).CrossRefGoogle Scholar
  66. 66.
    R. Chauhan, V. C. Srivastava and A. D. Hiwarkar, J. Taiwan Inst. Chem. Eng., 69, 106 (2016).CrossRefGoogle Scholar
  67. 67.
    A. Goyal and V. C. Srivastava, Chem. Eng. J., 325, 289 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations