Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor
- 55 Downloads
Abstract
A two-dimensional pseudo-homogeneous model of wall-cooled fixed bed Fischer-Tropsch synthesis (FTS) reactor with Co/Re/γ-Al2O3 catalyst was developed to study the effect of process and design parameters on heat generation and removal characteristics. The influence of liquid-phase formation on heat transport was accounted for by using two-phase correlations. The effect of intraparticle diffusion on heat generation was considered. Detailed numerical simulations were performed to analyze the effect of process and design parameters on the reactor performance in terms of heat management. Results show that thermal behavior of FTS fixed bed reactors is very sensitive and any large disturbances can lead to temperature runaway. Large tube diameters are shown to be particularly unfavorable, with d t >5 cm resulting in axial and radial gradients greater than 20 K and 13 K, respectively. The importance of detailed reactor modeling when designing and optimizing FTS fixed bed reactors is highlighted.
Keywords
Fischer-Tropsch Synthesis Fixed Bed Reactor Cobalt Catalyst Heat ManagementPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- 1.M. E. Dry and A. P. Steynberg, Chapter 5-Commercial FT Process Applications, Studies in Surface Science and Catalysis, Elsevier, 152, 406 (2004).CrossRefGoogle Scholar
- 2.S. T. Sie, M. M. G. Senden and H. M. H. Van Wechem, Catal. Today, 8(3), 371 (1991).CrossRefGoogle Scholar
- 3.A. Hoek and L. B. J. M. Kersten, The Shell Middle Distillate Synthesis process: technology, products and perspective, Studies in Surface Science and Catalysis, Elsevier, 147, 25 (2004).Google Scholar
- 4.A. Jess, R. Popp and K. Hedden, Appl. Catal. A, 186, 321 (1999).CrossRefGoogle Scholar
- 5.D. Bode and S.T. Sie, US Patent US4686238 A (1987).Google Scholar
- 6.S.T. Sie and R. Krishna, Appl. Catal. A, 186, 55 (1999).CrossRefGoogle Scholar
- 7.A.Y. Khodakov, W. Chu and P. Fongarland, Chem. Rev., 107, 1692 (2007).CrossRefGoogle Scholar
- 8.A.P. Steynberg, M.E. Dry, B.H. Davis and B.B. Breman, Chapter 2-Fischer-Tropsch Reactors, Studies in Surface Science and Catalysis, Elsevier, 152, 64 (2004).CrossRefGoogle Scholar
- 9.O.M. Basha, L. Sehabiague, A. Abdel-Wahab and B. I. Morsi, Int. J. Chem. Reactor Eng., 13(3), 201 (2015).CrossRefGoogle Scholar
- 10.H.E. Atwood and C.O. Bennett, Ind. Eng. Chem. Process Des. Dev., 18, 163 (1979).CrossRefGoogle Scholar
- 11.G. Bub and M. Baerns, Chem. Eng. Sci., 35, 348 (1980).CrossRefGoogle Scholar
- 12.Y.-N. Wang, Y.-Y. Xu, Y.-W. Li, Y.-L. Zhao and B.-J. Zhang, Chem. Eng. Sci., 58, 867 (2003).CrossRefGoogle Scholar
- 13.G. Chabot, R. Guilet, P. Cognet and C. Gourdon, Chem. Eng. Sci., 127, 72 (2015).CrossRefGoogle Scholar
- 14.R. Guettel and T. Turek, Chem. Eng. Sci., 64, 955 (2009).CrossRefGoogle Scholar
- 15.K. M. Brunner, J. C. Duncan, L. D. Harrison, K. E. Pratt, R. P. S. Peguin, C. H. Bartholomew and W. C. Hecker, Int. J. Chem. Reactor Eng., 10, 1 (2012).CrossRefGoogle Scholar
- 16.A. Sharma, R. Philippe, F. Luck and D. Schweich, Chem. Eng. Sci., 66, 6358 (2011).CrossRefGoogle Scholar
- 17.T. S. Lee and J. N. Chung, Energy Fuels, 26, 1363 (2012).CrossRefGoogle Scholar
- 18.A. Jess and C. Kern, Chem. Eng. Technol., 32, 1164 (2009).CrossRefGoogle Scholar
- 19.A. Jess and C. Kern, Chem. Eng. Technol., 35(2), 369 (2012).CrossRefGoogle Scholar
- 20.A. Jess and C. Kern, Chem. Eng. Technol., 35, 379 (2012).CrossRefGoogle Scholar
- 21.A. Moutsoglou and P. P. Sunkara, Energy Fuels, 25(5), 2242 (2011).CrossRefGoogle Scholar
- 22.M. M. Ghouri, S. Afzal, R. Hussain, J. Blank, D. B. Bukur and N. O. Elbashir, Comput. Chem. Eng., 91, 38 (2016).CrossRefGoogle Scholar
- 23.N. Park, J. R. Kim, Y. Yoo, J. Lee and M. J. Park, Fuel, 122, 229 (2014).CrossRefGoogle Scholar
- 24.P. Kaiser and A. Jess, Energy Technol., 2(5), 486 (2014).CrossRefGoogle Scholar
- 25.A. Ghareghashi, F. Shahraki, K. Razzaghi, S. Ghader and M. A. Torangi, Korean J. Chem. Eng., 34, 87 (2017).CrossRefGoogle Scholar
- 26.J. Knochen, R. Guettel, C. Knobloch and T. Turek, Chem. Eng. Process., 49, 958 (2010).CrossRefGoogle Scholar
- 27.M. Stamenić, V. Dikić, M. Mandić, B. Todić, D. B. Bukur and N. M. Nikačević, Ind. Eng. Chem. Res., 56(36), 9964 (2017).CrossRefGoogle Scholar
- 28.N. J. Mariani, O. M. Martínez and G. F. Barreto, Chem. Eng. Sci., 56(21-22), 5995 (2001).CrossRefGoogle Scholar
- 29.A.M. Hilmen, E. Bergene, O. A. Lindvåg, D. Schanke, S. Eri and A. Holmen, Catal. Today, 105(3-4), 357 (2005).CrossRefGoogle Scholar
- 30.R.M. de Deugd, F. Kapteijn and J. A. Moulijn, Catal Today, 79-80, 495 (2003).CrossRefGoogle Scholar
- 31.A. Matsuura, Y. Hitaka, T. Akehata and T. Shirai, Heat Transfer-Jpn. Res., 8, 44 (1979).Google Scholar
- 32.M.R. Khadilkar, PhD Thesis, Washington University (1998).Google Scholar
- 33.M. F.M. Post, A.C. Van’t Hoog, J. K. Minderhoud and S.T. Sie, AIChE J., 35(7), 1107 (1989).CrossRefGoogle Scholar
- 34.G.F. Froment, K.B. Bischoff and J. De Wilde, Chemical Reactor Analysis and Design, 3rd Ed., Wiley (2011).Google Scholar
- 35.L.C. Young and B.A. Finlayson, Ind. Eng. Chem. Fund., 12, 412 (1973).CrossRefGoogle Scholar
- 36.A. de Klerk, AIChE J., 49, 2022 (2003).CrossRefGoogle Scholar
- 37.H. Delmas and G. F. Froment, Chem. Eng. Sci., 43, 2281 (1988).CrossRefGoogle Scholar
- 38.B. Todic, T. Bhatelia, G. F. Froment, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Ind. Eng. Chem. Res., 52, 669 (2013).CrossRefGoogle Scholar
- 39.I. C. Yates and C. N. Satterfield, Energy Fuels, 5(1), 168 (1991).CrossRefGoogle Scholar
- 40.W. Ma, G. Jacobs, T. K. Das and B. H. Davis, Ind. Eng. Chem. Res., 53(6), 2157 (2014).CrossRefGoogle Scholar
- 41.B. Todic, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Catal. Today, 228, 32 (2014).CrossRefGoogle Scholar
- 42.S. Ergun, Chem. Eng. Prog., 48, 89 (1952).Google Scholar
- 43.R. Krishna and S. T. Sie, Chem. Eng. Sci., 49, 4029 (1994).CrossRefGoogle Scholar
- 44.W. H. Zimmerman, J. A. Rossin and D. B. Bukur, Ind. Eng. Chem. Res., 28(4), 406 (1989).CrossRefGoogle Scholar
- 45.M. E. Dry, Appl. Catal. A., 138(2), 319 (1996).CrossRefGoogle Scholar
- 46.B. Kaskes, D. Vervloet, F. Kapteijn and J.R. van Ommen, Chem. Eng. J., 283, 1465 (2016).CrossRefGoogle Scholar
- 47.H. S. Fogler, Elements of chemical reaction engineering, Prentice-Hall (1992).Google Scholar
- 48.B. Poling, J. Prausnitz and J.O. Connell, The Properties of Gases and Liquids, McGraw-Hill Education (2000).Google Scholar
- 49.P. Chaumette, C. Verdon and P. Boucot, Top. Catal., 2(1-4), 301 (1995).CrossRefGoogle Scholar
- 50.M. Mandić, B. Todić, L. Živanić, N. Nikačević and D. B. Bukur, Ind. Eng. Chem. Res., 56(10), 2733 (2017).CrossRefGoogle Scholar
- 51.C. Erkey, J. B. Rodden and A. Akgerman, Can. J. Chem. Eng., 68, 661 (1990).CrossRefGoogle Scholar
- 52.J. J. Marano and G. D. Holder, Fluid Phase Equilib., 138, 1 (1997).CrossRefGoogle Scholar
- 53.A. P. de Wasch and G. F. Froment, Chem. Eng. Sci., 27(3), 567 (1972).CrossRefGoogle Scholar
- 54.C.-H. Li and B. Finlayson, Chem. Eng. Sci., 32(9), 1055 (1977).CrossRefGoogle Scholar
- 55.V. Specchia, G. Baldi and S. Sicardi, Chem. Eng. Commun., 4, 361 (1980).CrossRefGoogle Scholar
- 56.Y. Demirel, R. Sharma and H. Al-Ali, Int. J. Heat Mass Transfer., 43(2), 327 (2000).CrossRefGoogle Scholar
- 57.O. Bey and G. Eigenberger, Int. J. Therm. Sci., 40(2), 152 (2001).CrossRefGoogle Scholar
- 58.S. Yagi and D. Kunii, AIChE J., 6(1), 97 (1960).CrossRefGoogle Scholar
- 59.P. H. Calderbank and L. A. Pogorski, Trans. Inst. Chem. Eng., 35, 195 (1957).Google Scholar
- 60.M. J. Taulamet, N. J. Mariani, G. F. Barreto and O. M. Martínez, Rev. Chem. Eng., 31, 97 (2015).CrossRefGoogle Scholar
- 61.A. Matsuura, Y. Hitaka, T. Akehata and T. Shirai, Heat Transfer-Jpn. Res., 8, 53 (1979).Google Scholar
- 62.Y.-N. Wang, W.-P. Ma and Y.-J. Lu, Fuel, 82(2), 195 (2003).CrossRefGoogle Scholar
- 63.S.T. Sie and R. Krishna, Appl. Catal. A., 186, 55 (1999).CrossRefGoogle Scholar
- 64.V. Hlavacek, Ind. Eng. Chem., 62, 8 (1970).Google Scholar
- 65.K. Ghodasara, R. Smith and S. Hwang, Korean J. Chem. Eng., 31, 1136 (2014).CrossRefGoogle Scholar