Skip to main content
Log in

Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A two-dimensional pseudo-homogeneous model of wall-cooled fixed bed Fischer-Tropsch synthesis (FTS) reactor with Co/Re/γ-Al2O3 catalyst was developed to study the effect of process and design parameters on heat generation and removal characteristics. The influence of liquid-phase formation on heat transport was accounted for by using two-phase correlations. The effect of intraparticle diffusion on heat generation was considered. Detailed numerical simulations were performed to analyze the effect of process and design parameters on the reactor performance in terms of heat management. Results show that thermal behavior of FTS fixed bed reactors is very sensitive and any large disturbances can lead to temperature runaway. Large tube diameters are shown to be particularly unfavorable, with d t >5 cm resulting in axial and radial gradients greater than 20 K and 13 K, respectively. The importance of detailed reactor modeling when designing and optimizing FTS fixed bed reactors is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. Dry and A. P. Steynberg, Chapter 5-Commercial FT Process Applications, Studies in Surface Science and Catalysis, Elsevier, 152, 406 (2004).

    Article  CAS  Google Scholar 

  2. S. T. Sie, M. M. G. Senden and H. M. H. Van Wechem, Catal. Today, 8(3), 371 (1991).

    Article  CAS  Google Scholar 

  3. A. Hoek and L. B. J. M. Kersten, The Shell Middle Distillate Synthesis process: technology, products and perspective, Studies in Surface Science and Catalysis, Elsevier, 147, 25 (2004).

    CAS  Google Scholar 

  4. A. Jess, R. Popp and K. Hedden, Appl. Catal. A, 186, 321 (1999).

    Article  CAS  Google Scholar 

  5. D. Bode and S.T. Sie, US Patent US4686238 A (1987).

    Google Scholar 

  6. S.T. Sie and R. Krishna, Appl. Catal. A, 186, 55 (1999).

    Article  CAS  Google Scholar 

  7. A.Y. Khodakov, W. Chu and P. Fongarland, Chem. Rev., 107, 1692 (2007).

    Article  CAS  Google Scholar 

  8. A.P. Steynberg, M.E. Dry, B.H. Davis and B.B. Breman, Chapter 2-Fischer-Tropsch Reactors, Studies in Surface Science and Catalysis, Elsevier, 152, 64 (2004).

    Article  CAS  Google Scholar 

  9. O.M. Basha, L. Sehabiague, A. Abdel-Wahab and B. I. Morsi, Int. J. Chem. Reactor Eng., 13(3), 201 (2015).

    Article  CAS  Google Scholar 

  10. H.E. Atwood and C.O. Bennett, Ind. Eng. Chem. Process Des. Dev., 18, 163 (1979).

    Article  CAS  Google Scholar 

  11. G. Bub and M. Baerns, Chem. Eng. Sci., 35, 348 (1980).

    Article  CAS  Google Scholar 

  12. Y.-N. Wang, Y.-Y. Xu, Y.-W. Li, Y.-L. Zhao and B.-J. Zhang, Chem. Eng. Sci., 58, 867 (2003).

    Article  CAS  Google Scholar 

  13. G. Chabot, R. Guilet, P. Cognet and C. Gourdon, Chem. Eng. Sci., 127, 72 (2015).

    Article  CAS  Google Scholar 

  14. R. Guettel and T. Turek, Chem. Eng. Sci., 64, 955 (2009).

    Article  CAS  Google Scholar 

  15. K. M. Brunner, J. C. Duncan, L. D. Harrison, K. E. Pratt, R. P. S. Peguin, C. H. Bartholomew and W. C. Hecker, Int. J. Chem. Reactor Eng., 10, 1 (2012).

    Article  Google Scholar 

  16. A. Sharma, R. Philippe, F. Luck and D. Schweich, Chem. Eng. Sci., 66, 6358 (2011).

    Article  CAS  Google Scholar 

  17. T. S. Lee and J. N. Chung, Energy Fuels, 26, 1363 (2012).

    Article  CAS  Google Scholar 

  18. A. Jess and C. Kern, Chem. Eng. Technol., 32, 1164 (2009).

    Article  CAS  Google Scholar 

  19. A. Jess and C. Kern, Chem. Eng. Technol., 35(2), 369 (2012).

    Article  CAS  Google Scholar 

  20. A. Jess and C. Kern, Chem. Eng. Technol., 35, 379 (2012).

    Article  CAS  Google Scholar 

  21. A. Moutsoglou and P. P. Sunkara, Energy Fuels, 25(5), 2242 (2011).

    Article  CAS  Google Scholar 

  22. M. M. Ghouri, S. Afzal, R. Hussain, J. Blank, D. B. Bukur and N. O. Elbashir, Comput. Chem. Eng., 91, 38 (2016).

    Article  CAS  Google Scholar 

  23. N. Park, J. R. Kim, Y. Yoo, J. Lee and M. J. Park, Fuel, 122, 229 (2014).

    Article  CAS  Google Scholar 

  24. P. Kaiser and A. Jess, Energy Technol., 2(5), 486 (2014).

    Article  CAS  Google Scholar 

  25. A. Ghareghashi, F. Shahraki, K. Razzaghi, S. Ghader and M. A. Torangi, Korean J. Chem. Eng., 34, 87 (2017).

    Article  CAS  Google Scholar 

  26. J. Knochen, R. Guettel, C. Knobloch and T. Turek, Chem. Eng. Process., 49, 958 (2010).

    Article  CAS  Google Scholar 

  27. M. Stamenić, V. Dikić, M. Mandić, B. Todić, D. B. Bukur and N. M. Nikačević, Ind. Eng. Chem. Res., 56(36), 9964 (2017).

    Article  Google Scholar 

  28. N. J. Mariani, O. M. Martínez and G. F. Barreto, Chem. Eng. Sci., 56(21-22), 5995 (2001).

    Article  CAS  Google Scholar 

  29. A.M. Hilmen, E. Bergene, O. A. Lindvåg, D. Schanke, S. Eri and A. Holmen, Catal. Today, 105(3-4), 357 (2005).

    Article  CAS  Google Scholar 

  30. R.M. de Deugd, F. Kapteijn and J. A. Moulijn, Catal Today, 79-80, 495 (2003).

    Article  Google Scholar 

  31. A. Matsuura, Y. Hitaka, T. Akehata and T. Shirai, Heat Transfer-Jpn. Res., 8, 44 (1979).

    CAS  Google Scholar 

  32. M.R. Khadilkar, PhD Thesis, Washington University (1998).

    Google Scholar 

  33. M. F.M. Post, A.C. Van’t Hoog, J. K. Minderhoud and S.T. Sie, AIChE J., 35(7), 1107 (1989).

    Article  CAS  Google Scholar 

  34. G.F. Froment, K.B. Bischoff and J. De Wilde, Chemical Reactor Analysis and Design, 3rd Ed., Wiley (2011).

    Google Scholar 

  35. L.C. Young and B.A. Finlayson, Ind. Eng. Chem. Fund., 12, 412 (1973).

    Article  CAS  Google Scholar 

  36. A. de Klerk, AIChE J., 49, 2022 (2003).

    Article  Google Scholar 

  37. H. Delmas and G. F. Froment, Chem. Eng. Sci., 43, 2281 (1988).

    Article  CAS  Google Scholar 

  38. B. Todic, T. Bhatelia, G. F. Froment, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Ind. Eng. Chem. Res., 52, 669 (2013).

    Article  CAS  Google Scholar 

  39. I. C. Yates and C. N. Satterfield, Energy Fuels, 5(1), 168 (1991).

    Article  CAS  Google Scholar 

  40. W. Ma, G. Jacobs, T. K. Das and B. H. Davis, Ind. Eng. Chem. Res., 53(6), 2157 (2014).

    Article  CAS  Google Scholar 

  41. B. Todic, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Catal. Today, 228, 32 (2014).

    Article  CAS  Google Scholar 

  42. S. Ergun, Chem. Eng. Prog., 48, 89 (1952).

    CAS  Google Scholar 

  43. R. Krishna and S. T. Sie, Chem. Eng. Sci., 49, 4029 (1994).

    Article  CAS  Google Scholar 

  44. W. H. Zimmerman, J. A. Rossin and D. B. Bukur, Ind. Eng. Chem. Res., 28(4), 406 (1989).

    Article  CAS  Google Scholar 

  45. M. E. Dry, Appl. Catal. A., 138(2), 319 (1996).

    Article  CAS  Google Scholar 

  46. B. Kaskes, D. Vervloet, F. Kapteijn and J.R. van Ommen, Chem. Eng. J., 283, 1465 (2016).

    Article  CAS  Google Scholar 

  47. H. S. Fogler, Elements of chemical reaction engineering, Prentice-Hall (1992).

    Google Scholar 

  48. B. Poling, J. Prausnitz and J.O. Connell, The Properties of Gases and Liquids, McGraw-Hill Education (2000).

    Google Scholar 

  49. P. Chaumette, C. Verdon and P. Boucot, Top. Catal., 2(1-4), 301 (1995).

    Article  CAS  Google Scholar 

  50. M. Mandić, B. Todić, L. Živanić, N. Nikačević and D. B. Bukur, Ind. Eng. Chem. Res., 56(10), 2733 (2017).

    Article  Google Scholar 

  51. C. Erkey, J. B. Rodden and A. Akgerman, Can. J. Chem. Eng., 68, 661 (1990).

    Article  CAS  Google Scholar 

  52. J. J. Marano and G. D. Holder, Fluid Phase Equilib., 138, 1 (1997).

    Article  CAS  Google Scholar 

  53. A. P. de Wasch and G. F. Froment, Chem. Eng. Sci., 27(3), 567 (1972).

    Article  Google Scholar 

  54. C.-H. Li and B. Finlayson, Chem. Eng. Sci., 32(9), 1055 (1977).

    Article  CAS  Google Scholar 

  55. V. Specchia, G. Baldi and S. Sicardi, Chem. Eng. Commun., 4, 361 (1980).

    Article  CAS  Google Scholar 

  56. Y. Demirel, R. Sharma and H. Al-Ali, Int. J. Heat Mass Transfer., 43(2), 327 (2000).

    Article  CAS  Google Scholar 

  57. O. Bey and G. Eigenberger, Int. J. Therm. Sci., 40(2), 152 (2001).

    Article  CAS  Google Scholar 

  58. S. Yagi and D. Kunii, AIChE J., 6(1), 97 (1960).

    Article  CAS  Google Scholar 

  59. P. H. Calderbank and L. A. Pogorski, Trans. Inst. Chem. Eng., 35, 195 (1957).

    Google Scholar 

  60. M. J. Taulamet, N. J. Mariani, G. F. Barreto and O. M. Martínez, Rev. Chem. Eng., 31, 97 (2015).

    Article  CAS  Google Scholar 

  61. A. Matsuura, Y. Hitaka, T. Akehata and T. Shirai, Heat Transfer-Jpn. Res., 8, 53 (1979).

    CAS  Google Scholar 

  62. Y.-N. Wang, W.-P. Ma and Y.-J. Lu, Fuel, 82(2), 195 (2003).

    Article  CAS  Google Scholar 

  63. S.T. Sie and R. Krishna, Appl. Catal. A., 186, 55 (1999).

    Article  CAS  Google Scholar 

  64. V. Hlavacek, Ind. Eng. Chem., 62, 8 (1970).

    Google Scholar 

  65. K. Ghodasara, R. Smith and S. Hwang, Korean J. Chem. Eng., 31, 1136 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Branislav Todic or Dragomir B. Bukur.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todic, B., Mandic, M., Nikacevic, N. et al. Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor. Korean J. Chem. Eng. 35, 875–889 (2018). https://doi.org/10.1007/s11814-017-0335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0335-3

Keywords

Navigation