Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 1045–1052 | Cite as

Morphological, acoustical, and physical properties of free-rising polyurethane foams depending on the flow directions

  • Giwook Sung
  • Hyeon Choe
  • Yeongsu Choi
  • Jung Hyeun Kim
Polymer, Industrial Chemistry


Polyurethane foam is widely used for automobile compartments as sound absorption materials due to its excellent noise dissipation characteristics. This sound absorption property is strongly dependent on the cavity and pore structures of the foams, and the cell morphology can be modulated by controlling experimental parameters. Two types of gelling catalysts were demonstrated in fabrications of polyurethane foams to control the cell morphology. The cell morphology of the free-rising polyurethane foams was investigated using dibutyltin-dilaurate and triethylenediamnine gelling catalysts, and the cell structures were analyzed from the free-rising samples obtained in various sampling heights and flow directions. The finer cell morphology was obtained with the organotin type catalyst by the faster gelling reactivity, compared with the amine type catalyst. In addition, the spherical small cavities in the samples obtained from horizontal planes of the free-rising foams revealed higher sound absorption coefficient and physical toughness than the elliptical irregular cavities from vertical planes, due to the higher homogeneity of cavity distributions in the horizontal planes.


Polyurethane Foams Flow Direction Catalysts Sound Absorption Coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, Compos. Sci. Technol., 65, 2344 (2005).CrossRefGoogle Scholar
  2. 2.
    N.-C. Park, Y.-C. Kim and C.-R. Park, J. Korean Ind. Eng. Chem., 8, 197 (1997)Google Scholar
  3. 3.
    J. J. Zwinselman and W.D. Bachmann, J. Cell. Plast., 24, 274 (1988).CrossRefGoogle Scholar
  4. 4.
    D. K. Lee, L. Chen, A. Sendijarevic, V. Sendijarevic, K. C. Frisch and D. Klempner, J. Cell. Plast., 27, 135 (1991).CrossRefGoogle Scholar
  5. 5.
    R. Gayathri, R. Vasanthakumari and C. Padmanabhan, Int. J. Sci. Eng. Res., 4, 301 (2013).Google Scholar
  6. 6.
    Y. Liu, Y.B. Jia, X. J. Zhang, Z.C. Liu, Y.C. Ren and B. Yang, Appl. Mech. Mater., 307, 196 (2013).CrossRefGoogle Scholar
  7. 7.
    O. Doutres, N. Atalla and K. Dong, J. Appl. Phys., 110, 064901 (2011).CrossRefGoogle Scholar
  8. 8.
    J. G. Gwon, S. K. Kim and J. H. Kim, Mater. Des., 89, 448 (2016).CrossRefGoogle Scholar
  9. 9.
    J. G. Gwon, S. K. Kim and J. H. kim, J. Porous Mater., 23, 465 (2016).CrossRefGoogle Scholar
  10. 10.
    C. H. Sung, K. S. Lee, K. S. Lee, S. M. Oh, J. H. Kim, M. S. Kim and H. M. Jeong, Macromol. Res., 15, 443 (2007).CrossRefGoogle Scholar
  11. 11.
    O. Doutres, N. Atalla and K. Dong, J. Appl. Phys., 113, 054901 (2013).CrossRefGoogle Scholar
  12. 12.
    C. Zhang, J. Li, Z. Hu, F. Zhu and Y. Huang, Mater. Des., 41, 319 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Álvarez-Láinez, M. A. Rodríguez-Pérez and J. A. de Saja, Mater. Lett., 121, 26 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Tomyangkul, P. Pongmuksuwan, W. Harnnarongchai and K. Chaochanchaikul, J. Reinf. Plast. Compos., 35, 688 (2016).CrossRefGoogle Scholar
  15. 15.
    D. Randall and S. Lee, The polyurethanes book, Wiley, New York (2002).Google Scholar
  16. 16.
    E. Delebecq, J.-P. Pascault, B. Boutevin and F. Ganachaud, Chem. Rev., 113, 80 (2012).Google Scholar
  17. 17.
    G. Sung, J. G. Gwon, and J. H. Kim, J. Appl. Polym. Sci., 133, 43737 (2016).CrossRefGoogle Scholar
  18. 18.
    J. G. Gwon, G. Sung and J. H. Kim, Int. J. Precis. Eng. Manuf., 16, 2299 (2015).CrossRefGoogle Scholar
  19. 19.
    G. Sung, J. W. Kim and J. H. Kim, J. Ind. Eng. Chem., 44, 99 (2016).CrossRefGoogle Scholar
  20. 20.
    G. Sung, S. K. Kim, J. W. Kim and J. H. Kim, Polym. Test., 53, 156 (2016).CrossRefGoogle Scholar
  21. 21.
    S. K. Kim, G. Sung, J. G. Gwon and J. H. Kim, Int. J. Precis. Eng. Manuf.-Green Technol., 3, 367 (2016).CrossRefGoogle Scholar
  22. 22.
    G. Sung and J. H. Kim, Korean J. Chem. Eng., 34, 1222 (2017).CrossRefGoogle Scholar
  23. 23.
    G. Sung and J. H. Kim, Compos. Sci. Technol., 146, 147 (2017).CrossRefGoogle Scholar
  24. 24.
    J. Lee, G. H. Kim and C. S. Ha, J. Appl. Polym. Sci., 123, 2384 (2012).CrossRefGoogle Scholar
  25. 25.
    H.-M. Park, A. K. Mohanty, L. T. Drzal, E. Lee, D. F. Mielewski and M. Misra, J. Polym. Environ., 14, 27 (2006).CrossRefGoogle Scholar
  26. 26.
    D. L. Johnson, J. Koplik and R. Dashen, J. Fluid Mech., 176, 379 (1987).CrossRefGoogle Scholar
  27. 27.
    J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials, John Wiley & Sons, Chichester (2009).CrossRefGoogle Scholar
  28. 28.
    R. Verdejo, R. Stämpfli, M. Alvarez-Lainez, S. Mourad, M. Rodriguez-Perez, P. Brühwiler and M. Shaffer, Compos. Sci. Technol., 69, 1564 (2009).CrossRefGoogle Scholar
  29. 29.
    J. A. Elliott, A. H. Windle, J. R. Hobdell, G. Eeckhaut, R. J. Oldman, W. Ludwig, E. Boller, P. Cloetens and J. Baruchel, J. Mater. Sci., 37, 1547 (2002).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Giwook Sung
    • 1
  • Hyeon Choe
    • 1
  • Yeongsu Choi
    • 1
  • Jung Hyeun Kim
    • 1
  1. 1.Department of Chemical EngineeringUniversity of SeoulSeoulKorea

Personalised recommendations