Skip to main content
Log in

Change of band-gap position of MTiO2 particle doped with 3d-transition metal and control of product selectivity on carbon dioxide photoreduction

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study attempted to obtain various products from carbon dioxide photoreduction using TiO2 catalysts doped with different transition metals of Mn, Fe, Co, Ni, Cu, and Zn (MTiO2). The band-gaps of MTiO2 catalysts decreased compared to pure TiO2, except for ZnTiO2. The intensities in photoluminescence curves, which can predict the recombination of excited electrons and holes, were weaker in MTiO2 catalysts than that of pure TiO2. The products obtained from carbon dioxide photoreduction were strongly related to the redox potential of carbon dioxide and the locations of band-gaps of MTiO2 catalysts. Methane was predominantly obtained in pure TiO2, FeTiO2, and NiTiO2 catalysts, and methanol and carbon monoxide were selectively produced in the CuTiO2 and ZnTiO2 catalysts, respectively. This result suggests that the desired product from carbon dioxide photoreduction can be selectively synthesized by doping certain metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wilk, L. Więcław-Solny, A. Tatarczuk, A. Krótki, T. Spietz and T. Chwoła, Korean J. Chem. Eng., 34, 2275 (2017).

    Article  CAS  Google Scholar 

  2. Z. Cui, J. Fan, H. Duan, J. Zhang, Y. Xue and Y. Tan, Korean J. Chem. Eng., 34, 29 (2017).

    Article  CAS  Google Scholar 

  3. H. Huang, J. Lin, G. Zhu, Y. Weng, X. Wang, X. Fu and J. Long, Angew. Chem. Int. Ed., 55, 8314 (2016).

    Article  CAS  Google Scholar 

  4. S. Xie, Q. Zhang, G. Liu and Y. Wang, Chem. Commun., 52, 35 (2016).

    Article  CAS  Google Scholar 

  5. Z. He, L. Wen, D. Wang, Y. Xue, Q. Lu, C. Wu, J. Chen and S. Song, Energy Fuel, 3982, 28 (2014).

    Google Scholar 

  6. S. Nahar, M. F. M. Zain, A. A. H. Kadhum, H. A. Hasan and M. R. Hasan, Materials, 629, 10 (2017).

    Google Scholar 

  7. M. Zalfani, Z.-Y. Hud, W.-B. Yu, M. Mahdouani, R. Bourguiga, M. Wua, Y. Li, G. V. Tendeloo, Y. Djaoued and B.-L. Su, Appl. Catal. B: Environ., 205, 121 (2017).

    Article  CAS  Google Scholar 

  8. Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, R. Xiong, J. Shi and J. Wei, Sci. Rep., 4, 7045 (2014).

    Article  CAS  Google Scholar 

  9. H. Zhao, F. Pan and Y. Li, J. Materiomics, 3, 17 (2017).

    Article  Google Scholar 

  10. Y. Im, J. H. Lee and M. Kang, Korean J. Chem. Eng., 34(6), 1669 (2017).

    Article  CAS  Google Scholar 

  11. M. Zhang, J. Wu, D. D. Lu and J. Yang, Int. J. Photoenergy, 2013, 1 (2013).

    Google Scholar 

  12. S. Ali Ansari, M. Mansoob Khan, M. Omaish Ansari and M. H. Cho, New J. Chem., 40, 3000 (2016).

    Article  Google Scholar 

  13. F. M. Pesci, G. Wang, D. R. Klug, Y. Li and A. J. Cowan, J. Phys. Chem. C, 117, 25837 (2013).

    Article  CAS  Google Scholar 

  14. K. Zhang and J. H. Park, J. Phys. Chem. Lett., 8, 199 (2017).

    Article  CAS  Google Scholar 

  15. J. H. Lee, H. Lee and M. Kang, Mater. Lett., 178, 316 (2016).

    Article  CAS  Google Scholar 

  16. M. Park, B. S. Kwak, S. W. Jo and M. Kang, Energy Conv. Manage., 103, 431 (2015).

    Article  CAS  Google Scholar 

  17. D. Dvoranová, V. Brezová, M. Mazúr and M. A. Malati, Appl. Catal. B: Environ., 37, 91 (2002).

    Article  Google Scholar 

  18. S. Sakthivel and H. Kisch, ChemPhysChem, 4, 487 (2003).

    Article  CAS  Google Scholar 

  19. K. Yang, Y. Dai, B. Huang and M.-H. Whang, J. Phys. Chem. C., 113, 2624 (2009).

    Article  CAS  Google Scholar 

  20. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Appl. Catal. A: Gen., 265, 115 (2004).

    Article  CAS  Google Scholar 

  21. S. Protti, A. Albini and N. Serpone, Phys. Chem. Chem. Phys., 16, 19790 (2014).

    Article  CAS  Google Scholar 

  22. J. Low, J. Yu and W. Ho, J. Phys. Chem. Lett., 6, 4244 (2015).

    Article  CAS  Google Scholar 

  23. H. S. Kim, D. Kim, B. S. Kwak, G. B. Han, M.-H. Um and M. Kang, Chem. Eng. J., 243, 272 (2014).

    Article  CAS  Google Scholar 

  24. B. S. Kwak and M. Kang, Appl. Surf. Sci., 337, 138 (2015).

    Article  CAS  Google Scholar 

  25. J. Ge, Y. Ping, G. Liu, G. Qiao, E. J. Kim and M. Wang, Mater. Lett., 181, 216 (2016).

    Article  CAS  Google Scholar 

  26. A. W. Burton, K. Ong, T. Rea and I. Y. Chan, Micropor. Mesopor. Mater., 117, 75 (2009).

    Article  CAS  Google Scholar 

  27. G. O. Park, J. K. Shon, Y. H. Kim and J. M. Kim, J. Nanosci. Nanotechnol., 15, 2441 (2015).

    Article  CAS  Google Scholar 

  28. X. Deng and C. Matranga, J. Phys. Chem. C., 113, 11104 (2009).

    Article  CAS  Google Scholar 

  29. Z.-J. Jiang and Z. Jiang, Sci. Rep., 6, 27081 (2016).

    Article  CAS  Google Scholar 

  30. M. Muruganandham, R. P. S. Suri, M. Sillanpää, G.-J. Lee and J. J. Wu, Electron. Mater. Lett., 12, 693 (2016).

    Article  CAS  Google Scholar 

  31. F. Wu, S. Banerjee, H. Li, Y. Myung and P. Banerjee, Langmuir, 32, 4485 (2016).

    Article  CAS  Google Scholar 

  32. H. Tian, H. Fan, G. Dong, L. Ma and J. Ma, RSC Adv., 6, 109091 (2016).

    CAS  Google Scholar 

  33. J. Fang, F. Shi, J. Bu, J. Ding, S. Xu, J. Bao, Y. Ma, Z. Jiang, W. Zhang, C. Gao and W. Huang, J. Phys. Chem. C., 114, 7940 (2010).

    Article  CAS  Google Scholar 

  34. S. Benkoula, O. Sublemontier, M. Patanen, C. Nicolas, F. Sirotti, A. Naitabdi, F. Gaie-Levrel, E. Antonsson, D. Aureau, F.-X. Ouf, S.-I. Wada, A. Etcheberry, K. Ueda and C. Miron, Sci. Rep., 5, 15088 (2015).

    Article  CAS  Google Scholar 

  35. H. Sun, L. Biedermann and T. C. Bond, Geophys. Res. Lett., 34, 17813 (2007).

    Article  Google Scholar 

  36. J. Peña-Flores, A. F. Palomec-Garfias, C. Márquez-Beltrán, E. Sánchez-Mora, E. Gómez-Barojas and F. Pérez-Rodríguez, Nanoscale Res. Lett., 9, 499 (2014).

    Article  Google Scholar 

  37. J. Chae and M. Kang, J. Power Source, 196, 4143 (2011).

    Article  CAS  Google Scholar 

  38. R. da S. Santos, G. A. Faria, C. Giles, C. A. P. Leite, H. de S. Barbosa, M. A. Z. Arruda and C. Longo, Appl. Mater. Interf., 4, 5555 (2012).

    Article  CAS  Google Scholar 

  39. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani and M. R. Gholami, J. Hazard. Mater., 172, 1573 (2009).

    Article  CAS  Google Scholar 

  40. Y. Hori, Modern Aspect Electrochem., 42, 89 (2008).

    Article  CAS  Google Scholar 

  41. J. Chen, L. Falivene, L. Caporaso, L. Cavallo and E. Y.-X. Chen, J. Am. Chem. Soc., 138, 5321 (2016).

    Article  CAS  Google Scholar 

  42. S. Saeidi, N. A. Saidina Amin and M. R. Rahimpour, J. CO 2 Utilization, 5, 66 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misook Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, J.Y., Kim, J., Jang, Y. et al. Change of band-gap position of MTiO2 particle doped with 3d-transition metal and control of product selectivity on carbon dioxide photoreduction. Korean J. Chem. Eng. 35, 1009–1018 (2018). https://doi.org/10.1007/s11814-017-0286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0286-8

Keywords

Navigation