Skip to main content

Advertisement

Log in

Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM)

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Energy source diversification through development of coalbed methane (CBM) resources is one of the key strategies to make a country less dependent on simple energy resources (e.g., crude oil, natural gas, nuclear energy etc.). Especially, enhanced coalbed methane (ECBM) technology can be expected to secure the resources as well as environmental benefits. However, the raw CBM gas obtained from CO2 ECBM contains a considerable amount of CO2, and the CO2 content increases depending on the operation time of the facility. Considering the changes of the CBM composition, we developed process simulations of the CBM separation & purification processes based on the amine absorption to meet the design specifications (CH4 purity of product stream: 99%, CH4 recovery rate: 99%) with different CBM feed gas conditions. Using the developed simulation model, we performed an economic evaluation using unit methane production cost (MPC) considering coal-swelling types and facility operation time, and established an operation strategy under different natural gas market scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Mohr and G. Evans, Energy Policy, 38(1), 265 (2010).

    Article  Google Scholar 

  2. A. Midilli, M. Ay, I. Dincer and M. Rosen, Renewable Sustainable Energy Rev., 9(3), 255 (2005).

    Article  CAS  Google Scholar 

  3. B. Liang, W. Sun, Q. Qi and H. Li, Int. J. Min. Sci. Technol., 22(6), 891 (2012).

    Article  Google Scholar 

  4. C. Jenkins, C. Boyer, J. Pet. Technol., 60(2), 92 (2008).

    Article  Google Scholar 

  5. K. Aminian and S. Ameri, J. Nat. Gas Sci. Eng., 1(1-2), 25 (2009).

    Article  Google Scholar 

  6. D. Luo and Y. Dai, Energy Policy, 37(10), 3883 (2009).

    Article  Google Scholar 

  7. K. Kim, W. Sung and J. Han, J. Korean Inst. Gas, 17(2), 36 (2013).

    Article  CAS  Google Scholar 

  8. A. Al-Jubori, S. Johnston, C Boyer, S. Lambert, O. Bustos and J. Pashin, Oilfield Rev., 21, 4 (2009).

    CAS  Google Scholar 

  9. C. Sinayuc, J. Shi, C. Imrie, SA. Syed, A. Korre and S. Durucan, Energy Procedia, 4, 2150 (2011).

    Article  Google Scholar 

  10. M. Sayyafzadeh, A. Keshavarz, A. Alias, K. Dong and M. Manser, J. Nat. Gas Sci. Eng., 27(2), 1205 (2015).

    Article  CAS  Google Scholar 

  11. P. Fulton, C. Parente, B. Rogers, N. Shah and A. Reznik, A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection (1980).

    Book  Google Scholar 

  12. A. Ranathunga, M. Perera, P. Ranjith and C. Wei, Fuel, 189, 391 (2017).

    Article  CAS  Google Scholar 

  13. U. Zahid, Y. Lim, J. Jung and C. Han, Korean J. Chem. Eng., 28(3), 674 (2011).

    Article  CAS  Google Scholar 

  14. C. Liu, Y. Dang, Y. Zhou, J. Liu, Y. Sun and W. Su, Adsorpt., 18(3-4), 321 (2012).

    Article  CAS  Google Scholar 

  15. D. Ko, Ind. Eng. Chem. Res., 55(4), 1013 (2016).

    Article  CAS  Google Scholar 

  16. E. Robertson, Idaho National Laboratory, INL/EXT-08-13816, (2007).

    Google Scholar 

  17. G. Zhang, S. Fan, B. Hua, Y. Wang, T. Huang and Y. Xie, J. Energy Chem., 22(3), 533 (2013).

    Article  CAS  Google Scholar 

  18. X. Wei, P. Massarotto, G. Wang, V. Rudolph and S. Golding, Fuel, 89(5), 1110 (2010).

    Article  CAS  Google Scholar 

  19. F. Zhou, W. Hou, G. Allinson, J. Wu, J. Wang and Y. Cinar, Int. J. Greenhouse Gas Control, 19, 26 (2013).

    Article  CAS  Google Scholar 

  20. E. First, M. Hasan and C. Floudas, AIChE J., 60(5), 1767 (2014).

    Article  CAS  Google Scholar 

  21. S. Day, R. Fry and R. Sakurovs, Int. J. Coal Geol., 74(1), 41 (2008).

    Article  CAS  Google Scholar 

  22. Z. Chen, Z. Pan, J. Liu, L. Connell and D. Elsworth, Int. J. Greenhouse Gas Control, 5(5), 1284 (2011).

    Article  CAS  Google Scholar 

  23. J. Xie, M. Gao, B. Yu, R. Zhang and W. Jin, Geomech. Geophys. Geoenergy and Geo-resour., 1(1-2), 15 (2015).

    Article  Google Scholar 

  24. C. Karacan, Int. J. Coal Geol., 72(3-4), 209 (2007).

    Article  CAS  Google Scholar 

  25. S. Karacan and F. Karacan, Sci. Technol. Online, 2(2), (2012).

    Google Scholar 

  26. S. Park, H. Song, M. Lee and J. Park, Korean J. Chem. Eng., 31(1), 125 (2014).

    Article  CAS  Google Scholar 

  27. T. He and Y. Ju, Appl. Energy, 115, 17 (2014).

    Article  Google Scholar 

  28. W. Nie, S. J. Peng, J. Xu, L.R. Liu, G. Wang and J. B. Geng, Sci. World J., 2014(1), Article ID 185608 (2014).

    Google Scholar 

  29. F. Mu, W. Zhong, X. Zhao, C. Che, Y. Chen and J. Zhu, Nat. Gas Ind. B, 2(4), 383 (2015).

    Article  Google Scholar 

  30. DOE U, Powder River Basin Coalbed Methane Development and Produced Water Management Study. US Department of Energy (2002).

    Google Scholar 

  31. Guide APU, Aspen Technology. Inc. (2009).

    Google Scholar 

  32. S. Kim, D. Ko, S. Row and J. Kim, Chem. Eng. Res. Design, 115(A), 230 (2016).

    Article  CAS  Google Scholar 

  33. P. Mores, N. Rodríguez, N. Scenna and S. Mussati, Int. J. Greenhouse Gas Control, 10, 148 (2012).

    Article  Google Scholar 

  34. H. Hwang, J. Han and I. Lee, Ind. Eng. Chem. Res., 52(51), 18334 (2013).

    Article  CAS  Google Scholar 

  35. J. Kim, J. Miller, C. Maravelias and E. Stechel, Appl. Energy, 111, 1089 (2013).

    Article  CAS  Google Scholar 

  36. J. De Graaff, V. Zuazo, N. Jones and L. Fleskens, J. Environ. Manage., 89(2), 129 (2008).

    Article  Google Scholar 

  37. D. Singh, E. Croiset, P. Douglas and M. Douglas, Energy Convers. Manage., 44(19), 3073 (2003).

    Article  CAS  Google Scholar 

  38. S. Wong, D. Macdonald, S. Andrei, W. Gunter, X. Deng and D. Law, Int. J. Coal Geol., 81(3-4), 280 (2010).

    Article  Google Scholar 

  39. R. Weijermars, Appl. Energy, 106, 100 (2013).

    Article  Google Scholar 

  40. US Energy Information Administration. Natural gas monthly 2016. http://www.eia.gov/2016 (2016)

    Google Scholar 

  41. N. Haeffelé, The Feasibility and the Economic Viability of Shipping LNG via the Northern Sea Route 2013.

    Google Scholar 

  42. R. Egging, F. Holz and S. Gabriel, Energy, 35(10), 4016 (2010).

    Article  Google Scholar 

  43. J. Kim, C. Henao, T. Johnson, D. Dedrick, J. Miller and E. Stechel and C. Maravelias, Energy Environ. Sci., 4, 3122 (2011).

    Article  CAS  Google Scholar 

  44. S. Fleten and E. Näsäkkälä, Energy Econ., 32(4), 805 (2010).

    Article  Google Scholar 

  45. H. Naims, Environ. Sci. Pollut. Res., 23(22), 22226 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Ko, D., Mun, J. et al. Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM). Korean J. Chem. Eng. 35, 941–955 (2018). https://doi.org/10.1007/s11814-017-0261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0261-4

Keywords

Navigation