Korean Journal of Chemical Engineering

, Volume 34, Issue 11, pp 2901–2915 | Cite as

Enhanced production of glutaminase free L-asparaginase II by Bacillus subtilis WB800N through media optimization

  • Chityala Sushma
  • Ashish Prabhu Anand
  • Venkata Dasu Veeranki


We studied the crucial components which elevate the expression of recombinant novel glutaminase free L-asparaginase II (rL-asp II) from Bacillus subtilis WB800N. The Plackett-Burman tool identified sucrose, NH4Cl, NaH2-PO4 and MgSO4 as the significant influencing factors (p<0.05). Further investigations showed that artificial neural network-genetic algorithm (ANN-GA) was more effective than central composite design (CCD) in optimizing the influencing factors. The maximum rL-asp II expression was found to be 389.56 IU/ml and 525.98 IU/ml using CCD (R2=90.4%) and ANN-GA (R2=96.2%), respectively. The validation experiments were carried out in a 3 L batch bioreactor where kinetic modelling of the obtained data was done. The rL-asp II expressed effectively inhibiting the polyacrylamide formation in vitro where no solidification was observed, when 2ml of purified rL-asp II used even after 60 min of incubation. This is the first study to report highest production of rL-asp II in B. subtilis WB800N (525.98 IU/ml) till date by combining statistical designs with consecutive intermittent addition of IPTG in batch reactor.


Bacillus subtilis WB800N L-asparaginase II Artificial Neural Network-genetic Algorithm Batch Reactor Unstructured Bio-kinetic Models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Altenbern and R.D. Housewright, Arch. Biochem. Biophys., 49, 130 (1954).CrossRefGoogle Scholar
  2. 2.
    J.D. Broome, J. Natl. Cancer Inst., 35, 967 (1965).Google Scholar
  3. 3.
    D. Borek and M. Jaskólski, Acta Biochim. Pol., 48, 893 (2001).Google Scholar
  4. 4.
    R. E. Peterson and A. Ciegler, Appl. Microbiol., 17, 929 (1969).Google Scholar
  5. 5.
    N.D. Holmquist, Proc. Soc. Exp. Biol. Med., 113, 444 (1963).CrossRefGoogle Scholar
  6. 6.
    K. Michalska, G. Bujacz and M. Jaskolski, J. Mol. Biol., 360, 105 (2006).CrossRefGoogle Scholar
  7. 7.
    C. E. Grover and A. C. Chibnall, Biochem. J., 21, 857 (1927).CrossRefGoogle Scholar
  8. 8.
    A. A. El-Bessoumy, M. Sarhan and J. Mansour, J. Biochem. Mol. Biol., 37, 387 (2004).Google Scholar
  9. 9.
    A. M. Lopes, L. Oliveira-Nascimento, A. Ribeiro, C. A. Tairum Jr., C. A. Breyer, M. A. Oliveira, G. Monteiro, C. M.Souza-Motta, P.O. Magalhães, J. G. Avendaño, A. M. Cavaco-Paulo, P.G. Mazzola, C.O. Rangel-Yagui, L.D. Sette, A. Converti and A. Pessoa., Crit. Rev. Biotechnol., 37, 82 (2017).CrossRefGoogle Scholar
  10. 10.
    W.H. Tong, R. Pieters, G. J.L. Kaspers, D.M.W.M.T. Loo, M.B. Bierings, C.V.D. Bos, W. J.W. Kollen, W. C. J. Hop, C. Lanvers-Kaminsky, M.V. Relling, W. J. E. Tissing and I.M.V.D. Sluis, Blood, 123, 2026 (2014).CrossRefGoogle Scholar
  11. 11.
    T. UmaMaheswari, T. Hemalatha, P. Sankaranarayanan and R. Puvanakrishnan, Indian J. Exp. Biol., 54, 7 (2016).Google Scholar
  12. 12.
    J. H. Schwartz, J.Y. Reeves and J.D. Broome, Proc. Natl. Acad. Sci. U.S.A., 56, 1516 (1966).CrossRefGoogle Scholar
  13. 13.
    J.C. Wriston and T.O. Yellin, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185 (1973).Google Scholar
  14. 14.
    N. Verma, K. Kumar, G. Kaur and S. Anand, Crit. Rev. Biotechnol., 27, 45 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Sajitha, J. Vidya, K. Varsha, P. Binod and A. Pandey, Biochem. Eng. J., 102, 14 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Jain, R. Naithani, G. Kapoor and T. Nath, Leuk. Res., 33, 194 (2009).CrossRefGoogle Scholar
  17. 17.
    R. B. Reinert, L. M. Oberle, S.A. Wek, P. Bunpo, X. P. Wang, I. Mileva, L.O. Goodwin, C. I. Aldrich, D. L. Durden, M.A. McNurlan, R.C. Wek and T. G. Anthony, J. Biol. Chem., 281, 31222 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Chityala, V.V. Dasu, J. Ahmad and R. S. Prakasham, Bioprocess Biosyst. Eng., 38, 2271 (2015).CrossRefGoogle Scholar
  19. 19.
    F. Pedreschi, S. Mariotti, K. Granby and J. Risum, LWT-Food Sci. Technol., 44, 1473 (2011).CrossRefGoogle Scholar
  20. 20.
    M.M. Rytting, Blood Lymphat. Cancer Targets Ther., 2, 117, (2012).CrossRefGoogle Scholar
  21. 21.
    N. Labrou and M. M. Muharram, Enzyme Microb. Technol., 92, 86 (2016).CrossRefGoogle Scholar
  22. 22.
    Z. Ciesarova, E. Kiss and P. Boegl, J. Food Nutr. Res., 45, 141 (2006).Google Scholar
  23. 23.
    Z. Ciesarová, K. Kukurová and C. Benešová, Nutr. Food Sci., 40, 55 (2010).CrossRefGoogle Scholar
  24. 24.
    F. Pedreschi, K. Kaack and K. Granby, Food Chem., 109, 386 (2008).CrossRefGoogle Scholar
  25. 25.
    E. Rytel A. Tajner-Czopek, J. Miedzianka, A. Kita, A. Nems and K. Hamouz, Int. J. Food Prop., null, 1 (2017).Google Scholar
  26. 26.
    S. Macauley-Patrick, M. L. Fazenda, B. McNeil and L. M. Harvey, Yeast, 22, 249 (2005).CrossRefGoogle Scholar
  27. 27.
    G. L. Rosano and E.A. Ceccarelli, Front. Microbiol., 5, 172 (2014).Google Scholar
  28. 28.
    Y. Onishi, S. Yano, J. Thongsanit, K. Takagi, K. Yoshimune and M. Wakayama, Ann. Microbiol., 61, 517 (2011).CrossRefGoogle Scholar
  29. 29.
    J. Xie, Y. Zhao, H. Zhang, Z. Liu and Z. Lu, Lett. Appl. Microbiol., 58, 53 (2014).CrossRefGoogle Scholar
  30. 30.
    M. Sarvas, C.R. Harwood, S. Bron and J. M. van Dijl, Biochim. Biophys. Acta, 1694, 311 (2004).Google Scholar
  31. 31.
    J. Jung, K.O. Yu, A. B. Ramzi, S. H. Choe, S.W. Kim and S.O. Han, Biotechnol. Bioeng., 109, 2349 (2012).CrossRefGoogle Scholar
  32. 32.
    C. Oh, M. De Zoysa, D. H. Kang, Y. Lee, I. Whang, C. Nikapitiya, S. J. Heo, K.T. Yoon, A. Affan and J. Lee, J. Microbiol. Biotechnol., 21, 1021 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Kamada, H. Sumitaka, F. Kazushi, M. Masato, S. Kengo, K. Keitarou and S. Yasubumi, PloS One, 10, 0141369 (2015).CrossRefGoogle Scholar
  34. 34.
    I. Palva, Gene, 19, 81 (1982).CrossRefGoogle Scholar
  35. 35.
    M. Simonen and I. Palva, Microbiol. Rev., 57, 109 (1993).Google Scholar
  36. 36.
    T.T. Nguyen, T.D. Quyen and H.T. Le, Microb. Cell Factories, 12, 79 (2013).CrossRefGoogle Scholar
  37. 37.
    Z. Luo, Q. Gao, X. Li and J. Bao, Appl. Biochem. Biotechnol., 173, 562 (2014).CrossRefGoogle Scholar
  38. 38.
    C. Cayuela, K. Kai, Y.S. Park, S. Iijima and T. Kobayashi, J. Ferment. Bioeng., 75, 383 (1993).CrossRefGoogle Scholar
  39. 39.
    Y.S. Park, K. Kai, S. Iijima and T. Kobayashi, Biotechnol. Bioeng., 40, 686 (1992).CrossRefGoogle Scholar
  40. 40.
    A. Vuolanto, N. von Weymarn, J. Kerovuo, H. Ojamo and M. Leisola, Biotechnol. Lett., 23, 761 (2001).CrossRefGoogle Scholar
  41. 41.
    H. Matsui, K. Sato, H. Enei, H. Shibai and Y. Hirose, Agric. Biol. Chem., 43, 1325 (1979).Google Scholar
  42. 42.
    X.-B. Gu, Z.-M. Zheng, H.-Q. Yu, J. Wang, F.-L. Liang and R.-L. Liu, Process Biochem., 40, 3196 (2005).CrossRefGoogle Scholar
  43. 43.
    A.W. Khan, M. S. Rahman, U. S. Zohora, M. Okanami and T. Ano, J. Environ. Sci. China, 23, 63 (2011).CrossRefGoogle Scholar
  44. 44.
    L. Westers, D. S. Dijkstra, H. Westers, J. M. van Dijl and W. J. Quax, J. Biotechnol., 123, 211 (2006).CrossRefGoogle Scholar
  45. 45.
    M. Wenzel, A. Müller, M. Siemann-Herzberg and J. Altenbuchner, Appl. Environ. Microbiol., 77, 6419 (2011).CrossRefGoogle Scholar
  46. 46.
    V.V. Dasu and T. Panda, Bioprocess Eng., 22, 45 (2000).CrossRefGoogle Scholar
  47. 47.
    L.V.A. Reddy, Y.-J. Wee, J.-S. Yun and H.-W. Ryu, Bioresour. Technol., 99, 2242 (2008).CrossRefGoogle Scholar
  48. 48.
    R.H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons (2016).Google Scholar
  49. 49.
    M. P. Pal, B.K. Vaidya, K.M. Desai, R.M. Joshi, S.N. Nene and B.D. Kulkarni, J. Ind. Microbiol. Biotechnol., 36, 747 (2009).CrossRefGoogle Scholar
  50. 50.
    A.A. Prabhu and A. Jayadeep, Prep. Biochem. Biotechnol., 47, 397 (2016).CrossRefGoogle Scholar
  51. 51.
    Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Springer Berlin Heidelberg (1996).CrossRefGoogle Scholar
  52. 52.
    J. Bryjak, K. Ciesielski and I. Zbicinski, J. Biotechnol., 114, 177 (2004).CrossRefGoogle Scholar
  53. 53.
    G.W. Luli and W.R. Strohl, Appl. Environ. Microbiol., 56, 1004 (1990).Google Scholar
  54. 54.
    J. Snay, J.W. Jeong and M. M. Ataai, Biotechnol. Prog., 5, 63 (1989).CrossRefGoogle Scholar
  55. 55.
    R. L. Plackett and J.P. Burman, Biometrika, 33, 305 (1946).CrossRefGoogle Scholar
  56. 56.
    I. Wacker, H. Ludwig, I. Reif, H.-M. Blencke, C. Detsch and J. Stülke, Microbiology, 149, 3001 (2003).CrossRefGoogle Scholar
  57. 57.
    J.A. Khuri Cornell, Response surfaces: designs and analyses, Marcel Dekker, Inc., New York (1987).Google Scholar
  58. 58.
    P.W. Araujo and R.G. Brereton, Trends Anal. Chem., 15, 63 (1996).Google Scholar
  59. 59.
    S. Kumar, K. Pakshirajan and V. V. Dasu, Appl. Microbiol. Biotechnol., 84, 477 (2009).CrossRefGoogle Scholar
  60. 60.
    K.M. Desai, S. A. Survase, P. S. Saudagar, S. S. Lele and R. S. Singhal, Biochem. Eng. J., 41, 266 (2008).CrossRefGoogle Scholar
  61. 61.
    M. Khayet and C. Cojocaru, Sep. Purif. Technol., 86, 171 (2012).CrossRefGoogle Scholar
  62. 62.
    Y. Yasin, F. B.H. Ahmad, M. Ghaffari-Moghaddam and M. Khajeh, Environ. Nanotechnol. Monit. Manag., 1, 2 (2014).CrossRefGoogle Scholar
  63. 63.
    N. Gera, R.V. S. Uppaluri, S. Sen and V. Venkata Dasu, Chem. Biochem. Eng. Q., 22, 315 (2008).Google Scholar
  64. 64.
    Y. Guo, F. Lou, Z.-Y. Peng, Z.-Y. Yuan and R. A. Korus, Biotechnol. Bioeng., 35, 99 (1990).CrossRefGoogle Scholar
  65. 65.
    A. P. Ornelas, W. B. Silveira, F. C. Sampaio and F. M. L. Passos, J. Appl. Microbiol., 104, 1008 (2008).CrossRefGoogle Scholar
  66. 66.
    A. Amrane, L. Adour and C. Couriol, Biochem. Eng. J., 24, 125 (2005).CrossRefGoogle Scholar
  67. 67.
    M.N. Saat, M. S. M. Annuar, Z. Alias, L.T. Chuan and Y. Chisti, Bioprocess Biosyst. Eng., 37, 765 (2014).CrossRefGoogle Scholar
  68. 68.
    A. Rajendran and V. Thangavelu, J. Bioprocess. Biotech., 2, 118 (2012).CrossRefGoogle Scholar
  69. 69.
    Y. Singh and S.K. Srivastava, J. Chem. Technol. Biotechnol., 89, 117 (2014).CrossRefGoogle Scholar
  70. 70.
    B. Meena, L. Anburajan, P.S. Dheenan, M. Begum, N.V. Vinith Kumar, G. Dharani and R. Kirubagaran, Bioprocess Biosyst. Eng., 38, 373 (2015).CrossRefGoogle Scholar
  71. 71.
    M.M. Bradford, Anal. Biochem., 72, 248 (1976).CrossRefGoogle Scholar
  72. 72.
    K. Adinarayana, P. Ellaiah, B. Srinivasulu, R. Bhavani Devi and G. Adinarayana, Process Biochem., 38, 1565 (2003).CrossRefGoogle Scholar
  73. 73.
    T.A. Esan, O. P. Sobukola, L.O. Sanni, H. A. Bakare and L. Munoz, Food Bioprod. Process., 95, 27 (2015).CrossRefGoogle Scholar
  74. 74.
    S. L.D. Kenari, I. Alemzadeh and V. Maghsodi, Food Bioprod. Process., 89, 315 (2011).CrossRefGoogle Scholar
  75. 75.
    R. S. Prakasham, C. S. Rao, R. S. Rao, S. Rajesham and P.N. Sarma, Appl. Biochem. Biotechnol., 120, 133 (2004).CrossRefGoogle Scholar
  76. 76.
    R. S. Rao, R. S. Prakasham, K.K. Prasad, S. Rajesham, P.N. Sarma and L.V. Rao, Process Biochem., 39, 951 (2004).CrossRefGoogle Scholar
  77. 77.
    B. Srinivasulu, R. S. Prakasham, A. Jetty, S. Srinivas, P. Ellaiah and S.V. Ramakrishna, Process Biochem., 38, 593 (2002).CrossRefGoogle Scholar
  78. 78.
    B.R. Glick, Biotechnol. Adv., 13, 247 (1995).CrossRefGoogle Scholar
  79. 79.
    W. E. Bentley, N. Mirjalili, D. C. Andersen, R. H. Davis and D. S. Kompala, Biotechnol. Bioeng., 35, 668 (1990).CrossRefGoogle Scholar
  80. 80.
    M. Lecina, E. Sarró, A. Casablancas, F. Gòdia and J. J. Cairó, Biochem. Eng. J., 70, 78 (2013).CrossRefGoogle Scholar
  81. 81.
    A. Agarwal, S. Kumar and V.D. Veeranki, Lett. Appl. Microbiol., 52, 307 (2011).CrossRefGoogle Scholar
  82. 82.
    M. Jia, M. Xu, B. He and Z. Rao, J. Agric. Food Chem., 61, 9428 (2013).CrossRefGoogle Scholar
  83. 83.
    P. Jacques, C. Hbid, J. Destain, H. Razafindralambo, M. Paquot, E. De Pauw and P. Thonart, Appl. Biochem. Biotechnol., 77, 223 (1999).CrossRefGoogle Scholar
  84. 84.
    F.M. Commichau, K. Forchhammer and J. Stülke, Curr. Opin. Microbiol., 9, 167 (2006).CrossRefGoogle Scholar
  85. 85.
    M. Hymavathi, T. Sathish, P. Brahmaiah and R. S. Prakasham, Chem. Biochem. Eng. Q., 24, 473 (2010).Google Scholar
  86. 86.
    K. Das and A.K. Mukherjee, Process Biochem., 42, 1191 (2007).CrossRefGoogle Scholar
  87. 87.
    M. Dauner, T. Storni and U. Sauer, J. Bacteriol., 183, 7308 (2001).CrossRefGoogle Scholar
  88. 88.
    Y. Tian, Y. Fan, X. Zhao, J. Zhang, L. Yang and J. Liu, Prep. Biochem. Biotechnol., 44, 529 (2014).CrossRefGoogle Scholar
  89. 89.
    K. Dutta, V. V. Dasu and K. Hegde, Adv. Microbiol., 3, 479 (2013).CrossRefGoogle Scholar
  90. 90.
    M. Kim, J.-B. Si, L.V. Reddy and Y.-J. Wee, RSC Adv., 6, 51270 (2016).CrossRefGoogle Scholar
  91. 91.
    H.M. da Costa, V.D. Ramos, W. S. da Silva and A. S. Sirqueira, Polym. Test., 29, 572 (2010).CrossRefGoogle Scholar
  92. 92.
    N.R. Draper, Applied Regression Analysis, Wiley (1981).Google Scholar
  93. 93.
    A.A. Prabhu, S. Chityala, Y. Garg and V.V. Dasu, Prep. Biochem. Biotechnol., 47, 236 (2017).CrossRefGoogle Scholar
  94. 94.
    W. Liu, W. Zhao, J. Lai, Q. Shen, Y. Xu, L. Pan and S. Chen, Biotechnol. Appl. Biochem. (2016), DOI:10.1002/bab.1532.Google Scholar
  95. 95.
    K. Sanjay, A. P. Anand, V.D. Veeranki and P. Kannan, Korean J. Chem. Eng., 34, 118 (2016).CrossRefGoogle Scholar
  96. 96.
    W.R. Barnes, G. L. Dorn and G.R. Vela, Appl. Environ. Microbiol., 33, 257 (1977).Google Scholar
  97. 97.
    G. Baskar and S. Renganathan, Asia-Pac. J. Chem. Eng., 7, 212 (2012).CrossRefGoogle Scholar
  98. 98.
    M. Dinarvand, M. Rezaee and M. Foroughi, Braz. J. Microbiol., 48, 427 (2017).CrossRefGoogle Scholar
  99. 99.
    M.B. Ghoshoon, A. Berenjian, S. Hemmati, F. Dabbagh, Z. Karimi, M. Negahdaripour and Y. Ghasemi, Int. J. Pept. Res. Ther., 21, 487 (2015).CrossRefGoogle Scholar
  100. 100.
    R.V. Mahajan S. Saran, K. Kameswaran, V. Kumar and R. K. Saxena, Bioresour. Technol., 125, 11 (2012).CrossRefGoogle Scholar
  101. 101.
    Y. Singh and S.K. Srivastav, Indian J. Exp. Biol., 51, 322 (2013).Google Scholar
  102. 102.
    Y. Feng, S. Liu, Y. Jiao, H. Gao, M. Wang, G. Du and J. Chen, Appl. Microbiol. Biotechnol., 101, 1509 (2016).CrossRefGoogle Scholar
  103. 103.
    B. Fatiha, B. Sameh, S. Youcef, D. Zeineddine and R. Nacer, Prep. Biochem. Biotechnol., 43, 33 (2013).CrossRefGoogle Scholar
  104. 104.
    M. Muthuraj, N. Chandra, B. Palabhanvi, V. Kumar and D. Das, BioEnergy Res., 8, 726 (2015).CrossRefGoogle Scholar
  105. 105.
    F. Rahimpour, R. Hatti-Kaul and G. Mamo, Process Biochem., 51, 452 (2016).CrossRefGoogle Scholar
  106. 106.
    P. Singh, S. S. Shera, J. Banik and R.M. Banik, Bioresour. Technol., 137, 261 (2013).CrossRefGoogle Scholar
  107. 107.
    M. Zafar, S. Kumar, S. Kumar and A.K. Dhiman, Biocatal. Agric. Biotechnol., 1, 70 (2012).Google Scholar
  108. 108.
    B. Gurunathan and R. Sahadevan, Biotechnol. Bioprocess Eng., 16, 50 (2011).CrossRefGoogle Scholar
  109. 109.
    S. Kumar, V.V. Dasu and K. Pakshirajan, Process Biochem., 45, 223 (2010).CrossRefGoogle Scholar
  110. 110.
    N. Deshpande, P. Choubey and M. Agashe, Scientific World J. (2014), DOI:10.1155/2014/895167.Google Scholar
  111. 111.
    M. Windholz, The Merck Index: An Encyclopaedia of Chemicals, Drugs and Biologicals, 10th Ed. NJ: Merck and Co. (1983).Google Scholar
  112. 112.
    M. J. Caulfield, G. G. Qiao and D. H. Solomon, Critical Reviews, 102, 3067 (2002).Google Scholar
  113. 113.
    V. Nandana, S. Singh, A. N. Singh and V.K. Dubey, Protein Exp. Purif., 103, 16 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Chityala Sushma
    • 1
  • Ashish Prabhu Anand
    • 1
  • Venkata Dasu Veeranki
    • 1
  1. 1.Biochemical Engineering Laboratory, Department of Biosciences and BioengineeringIndian Institute of Technology (IIT) GuwahatiGuwahatiIndia

Personalised recommendations