Skip to main content
Log in

Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson SD, 2011. Time-frequency methods for the analysis of multistaic acoustic scattering of elastic shells in shallow water. MS Thesis, Georgia Institute of Technology, 8–29.

    Google Scholar 

  • Anderson SD, Sabra KG, Zakharia ME, Sessarego JP, 2012. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell. The Journal of the Acoustical Society of America, 131, 164–173. DOI: 10.1121/1.3669995

    Article  Google Scholar 

  • Bucaro JA, Houston BH, Saniga M, Dragonette LR, Yoder T, Dey S, Kraus L, Carin L, 2008. Broadband acoustic scattering measurements of underwater unexploded ordnance. The Journal of the Acoustical Society of America, 123, 738–746. DOI: http://doi.org/10.1121/1.2821794

    Article  Google Scholar 

  • Decultot D, Lietard R, Maze G, 2010. Classification of a cylindrical target buried in a thin sand-water mixture using acoustic spectra. The Journal of the Acoustical Society of America, 127, 1328–1344. DOI: http://dx.doi.org/10.1121/1.3298430

    Article  Google Scholar 

  • Doolittle R D, Uberall H, Ugincius P, 1968. Sound scattering by elastic cylinders. The Journal of the Acoustical Society of America, 43(1), 1–14.

    Article  Google Scholar 

  • Fan J, 2001. Study on echo characteristics of underwater complex targets. PhD Thesis, Shanghai Jiaotong University, 30–62.

    Google Scholar 

  • Jansen M, Uytterhoeven G, Bultheel A, 1999. Image de-noising by integer wavelet transforms and generalized cross validation. Medical Physics, 26, 622.

    Article  Google Scholar 

  • Jiao LC, Tan S, 2003. Development and prospect of image multiscale geometrical analysis. Acta Electronica Sinica, 31, 12A.

    Google Scholar 

  • Leon H, 1999. Wavelet transforms for bioacoustics signal processing. The Journal of the Acoustical Society of America, 106, 2129.

    Google Scholar 

  • Li XK, 2000. Extraction and recognition of features of underwater target. PhD Thesis, Journal of Harbin Engineering University, 58–63.

    Google Scholar 

  • Li XK, Guo XS, Xu TY, Meng XX, 2015. Research on the method to extract the elastic scattering of underwater target based on wavelet transform. Technical Acoustics, 34(2), 314–346

    Google Scholar 

  • Li XK, Meng XX, Xia Z, 2015. Characteristics of the geometrical scattering waves from underwater target in fractional domain Fourier transform domain. Acta Phys. Sin., 64(6), 064302.

    Google Scholar 

  • Li XK, Yang SE, 2001. Extraction of features of underwater target. Journal of Harbin Engineering University, 22, 25–29.

    Google Scholar 

  • Pan A, Fan J, Zhuo LK, 2012. Acoustic scattering from a finite periodically bulkheads in cylindrical shell. Acta Phys. Sin., 61(21), 214301. DOI: 10.7498/aps.61.214301

    Google Scholar 

  • Pan A, Fan J, Zhuo LK, 2013. Acoustic scattering from a finite quasi-periodic bulkhead cylindrical shell. Acta Phys. Sin., 62, 024301. DOI: 10.7498/aps.62.024301

    Google Scholar 

  • Tang WL, 1994. Highlight model of echoes from sonar targets. Acta Acustica, 19(2), 92.

    Google Scholar 

  • Tang WL, Chen DZ, 1988. Echo structure of sound scattering by a finite elastic cylinder in water. Acta Acustica, 13(1), 29–36.

    Google Scholar 

  • Tesei A, Fawcett JA, Lim R, 2008. Physics-based detection of man-made elastic objects buried in high-density-clutter areas of saturated sediments. Applied Acoustics, 69, 422–437. DOI: http://dx.doi.org/10.1016/j.apacoust.2007.04.002

    Article  Google Scholar 

  • Zhang LG, Sun NH, Marston PL, 1992. Midfrequency enhancement of the backscattering of tone bursts by thin spherical shells. The Journal of the Acoustical Society of America, 91(4), 1862–1874.

    Article  Google Scholar 

  • Zheng GY, Fan J, Tang WL, 2010. Acoustic scattering from fluid-filled cylindrical shell in water:. Experiment. Acta Acustica, 35, 31–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiukun Li.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China(Grant No.51279033) and Natural Science Foundation of Heilongjiang Province, China(Grant No.F201346)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, X., Yang, Y. et al. Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain. J. Marine. Sci. Appl. 16, 93–101 (2017). https://doi.org/10.1007/s11804-017-1398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-017-1398-6

Keywords

Navigation