Skip to main content
Log in

Effect of downward seepage on turbulent flow characteristics and bed morphology around bridge piers

Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In this work, experimental investigations have been pursued to analyse the influence of downward seepage on the turbulent characteristics of flow and corresponding changes in vortex structure around circular bridge pier in alluvial channel. Experiments were conducted in sand bed channel with circular piers of different sizes for no seepage, 10% seepage and 20% seepage cases. The measurement of turbulent flow statistics such as velocity and Reynolds stresses is found to be negative within the scour hole at upstream of the pier whereas application of downward seepage retards the reversal of the flow causing a decrement in the velocity and Reynolds stresses. Higher Reynolds shear stress prevails at the downstream side because of the production of wake vortices. Contribution of all bursting events to the total Reynolds shear stress production has been observed to increase with downward seepage. The analysis of integral scale suggest that size of eddies increases with seepage, which is responsible for increase in particle mobility. Initially rate of scouring is more which abatements gradually with expanding time as well as with the increased of downward seepage. Presence of downward seepage reduces the depth and length of vortex and shifts towards downstream side of the pier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aghaee-Shalmani Y, Hakimzadeh H, 2015. Experimental investigation of scour around semi-conical piers under steady current action. European Journal of Environmental and Civil Engineering, 19(6), 717–732. DOI: http://dx.doi.org/10.1080/19648189.2014.968742

    Article  Google Scholar 

  • Ahmed, F., & Rajaratnam, N. 1998. Flow around bridge piers. Journal of Hydraulic Engineering, 124(3), 288–300.

    Article  Google Scholar 

  • Ansari SA, Kothyari UC, Ranga Raju KG, 2002. Influence of cohesion on scour around bridge piers. Journal of Hydraulic Research, 40(6), 717–729. DOI: http://dx.doi.org/10.1080/00221680209499918

    Article  Google Scholar 

  • Avent RR, Alawady M, 2005. Bridge scour and substructure deterioration: Case study. Journal of Bridge Engineering, 10(3), 247–254. DOI: http://dx.doi.org/10.1061/(ASCE)1084-0702(2005)10:3(247)

    Article  Google Scholar 

  • Baker CJ, 1981. New design equations for scour around bridge piers. Journal of the Hydraulics Division, 107(4), 507–511.

    Google Scholar 

  • Breusers, H, Nicollet G, Shen H, 1977. Local scour around cylindrical piers. Journal of Hydraulic Research, 15(3), 211–252.

    Article  Google Scholar 

  • Cao D, Chiew YM, 2013. Suction effects on sediment transport in closed-conduit flows. Journal of Hydraulic Engineering, 140(5), 04014008. DOI: http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000833

    Article  Google Scholar 

  • Chang WY, Lai JS, Yen CL, 2004. Evolution of scour depth at circular bridge piers. Journal of Hydraulic Engineering, 130(9), 905–913. DOI: 10.1061/(ASCE)0733-9429(2004)130:9(905)

    Article  Google Scholar 

  • Chen X, Chiew YM, 2004. Velocity distribution of turbulent open-channel flow with bed suction. Journal of Hydraulic Engineering, 130(2), 140–148. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:2(140)

    Article  Google Scholar 

  • Chiew YM, Lim FH, 2000. Failure behavior of riprap layer at bridge piers under live-bed conditions. Journal of Hydraulic Engineering, 126(1), 43–55. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:1(43)

    Article  Google Scholar 

  • Chiew Y, Melville B, 1987. Local scour around bridge piers. Journal of Hydraulic Research, 25(1), 15–26.

    Article  Google Scholar 

  • Chiew YM, 2004. Local scour and riprap stability at bridge piers in a degrading channel. Journal of Hydraulic Engineering, 130(3), 218–226. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:3(218)

    Article  Google Scholar 

  • Corvaro S, Miozzi M, Postacchini M, Mancinelli A, Brocchini M, 2014a. Fluid–particle interaction and generation of coherent structures over permeable beds: an experimental analysis. Advances in Water Resources, 72, 97–109. DOI: http://dx.doi.org/10.1016/j.advwatres.2014.05.015

  • Corvaro S, Seta E, Mancinelli A, Brocchini M, 2014b. Flow dynamics on a porous medium. Coastal Engineering, 91, 280–298. DOI: http://dx.doi.org/10.1016/j.coastaleng.2014.06.001

  • Deshpande V, Kumar B, 2016. Turbulent flow structures in alluvial channels with curved cross -sections under conditions of downward seepage. Earth Surface Processes and Landforms.

    Google Scholar 

  • Devi TB, Kumar B, 2015. Turbulent flow statistics of vegetative channel with seepage. Journal of Applied Geophysics, 123, 267–276. DOI: http://dx.doi.org/10.1016/j.jappgeo.2015.11.002

    Article  Google Scholar 

  • Dey S, Sarkar A, 2007. Effect of upward seepage on scour and flow downstream of an apron due to submerged jets. Journal of Hydraulic Engineering, 133(1), 59–69. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:1(59)

    Article  Google Scholar 

  • Dey S, Das R, Gaudio R, Bose SK, 2012. Turbulence in mobile-bed streams. Acta Geophysica, 60(6), 1547–1588. DOI: 10.2478/s11600-012-0055-3

    Article  Google Scholar 

  • Ettema R. 1980. Scour at Bridge Piers. Report No. 216, University of Auckland, School of Engineering, Auckland, New Zealand, 527.

    Google Scholar 

  • Francalanci S, Parker G, Solari L, 2008. Effect of seepage-induced nonhydrostatic pressure distribution on bed-load transport and bed morphodynamics. Journal of Hydraulic Engineering, 134(4), 378–389. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:4(378)

    Article  Google Scholar 

  • Garde R, Kothyari U, 1998. Scour around bridge piers. Proceedings-Indian National Science Academy PART A, 64, 569–580.

    Google Scholar 

  • Goring DG, Nikora VI, 2002. Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)

    Article  Google Scholar 

  • Graf W, Istiarto I, 2002. Flow pattern in the scour hole around a cylinder. Journal of Hydraulic Research, 40(1), 13–20. DOI: http://dx.doi.org/10.1080/00221680209499869

    Article  Google Scholar 

  • Grimaldi C, Gaudio R, Calomino F, Cardoso AH, 2009. Countermeasures against local scouring at bridge piers: slot and combined system of slot and bed sill. Journal of Hydraulic Engineering, 135(5), 425–431. DOI: http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000035

    Article  Google Scholar 

  • Gyr A, Schmid A. 1989. The different ripple formation mechanism. Journal of Hydraulic Research, 27(1), 61–74.

    Article  Google Scholar 

  • Izadinia E, Heidarpour M, Schleiss AJ, 2013. Investigation of turbulence flow and sediment entrainment around a bridge pier. Stochastic Environmental Research and Risk Assessment, 27(6), 1303–1314. DOI: 10.1007/s00477-012-0666-x

    Article  Google Scholar 

  • Jain SC, 1981. Maximum clear-water scour around circular piers. Journal of the Hydraulics Division, 107(5), 611–626.

    Google Scholar 

  • Kinzli KD, Martinez M, Oad R, Prior A, Gensler D, 2010. Using an ADCP to determine canal seepage loss in an irrigation district. Agric. Water Manag., 97(6), 801–810. DOI: http://dx.doi.org/10.1016/j.agwat.2009.12.014

    Article  Google Scholar 

  • Kothyari U, Ranga Raju K, Garde R, 1992. Live-bed scour around cylindrical bridge piers. Journal of Hydraulic Research, 30(5), 701–715.

    Article  Google Scholar 

  • Kothyari UC, 2008. Bridge scour: status and research challenges. ISH Journal of Hydraulic Engineering, 14(1), 1–27. DOI: http://dx.doi.org/10.1080/09715010.2008.10514889

    Article  Google Scholar 

  • Krishnamurthy K, Rao S, 1969. Theory and experiment in canal seepage estimation using radioisotopes. Journal of Hydrology, 9(3), 277–293.

    Article  Google Scholar 

  • Kumar V, Raju KGR, Vittal N, 1999. Reduction of local scour around bridge piers using slots and collars. Journal of Hydraulic Engineering, 125(12), 1302–1305. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)

    Article  Google Scholar 

  • Lagasse PF, 2007. Countermeasures to protect bridge piers from scour (Vol. 593): Transportation Research Board, 1–111.

    Google Scholar 

  • Laursen EM, Toch A. 1956. Scour around bridge piers and abutments (Vol. 4). Iowa Highway Research Board Ames, Iowa.

    Google Scholar 

  • Lu SS, Willmarth WW, 1973. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics, 60(03), 481–511.

    Article  Google Scholar 

  • Maity H, Mazumder B. 2012. Contributions of burst-sweep cycles to Reynolds shear stress over fluvial obstacle marks generated in a laboratory flume. International Journal of Sediment Research, 27(3), 378–387. DOI: http://dx.doi.org/10.1016/S1001-6279(12)60042-0

    Article  Google Scholar 

  • Marsh NA, Western AW, Grayson RB, 2004. Comparison of methods for predicting incipient motion for sand beds. Journal of Hydraulic Engineering, 130(7), 616–621. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:7(616)

    Article  Google Scholar 

  • Martin CA, Gates TK, 2014. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. J. Hydrol. 517, 746–761. DOI: http://dx.doi.org/10.1016/j.jhydrol.2014.05.074

    Article  Google Scholar 

  • Masjedi A, Bejestan MS, Esfandi, A. 2010. Experimental study on local scour around single oblong pier fitted with a collar in a 180 degree flume bend. International Journal of Sediment Research, 25(3), 304–312. DOI: http://dx.doi.org/10.1016/S1001-6279(10)60047-9

    Article  Google Scholar 

  • Melville B, Sutherland A, 1988. Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114(10), 1210–1226. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)

    Article  Google Scholar 

  • Melville BW, Coleman SE, 2000. Bridge scour: Water Resources Publication, 550

    Google Scholar 

  • Oliveto G, Hager WH, 2014. Morphological evolution of dune-like bed forms generated by bridge scour. Journal of Hydraulic Engineering, 140(5), 06014009. DOI: http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000853

    Article  Google Scholar 

  • Patel M, Deshpande V, Kumar B, 2015. Turbulent characteristics and evolution of sheet flow in an alluvial channel with downward seepage. Geomorphology, 248, 161–171. DOI: http://dx.doi.org/10.1016/j.geomorph.2015.07.042

    Article  Google Scholar 

  • Qadar A, 1981. The vortex scour mechanism at bridge piers. ICE Proceedings, 739–757.

    Google Scholar 

  • Qi M, Chiew YM, Hong JH, 2012. Suction effects on bridge pier scour under clear-water conditions. Journal of Hydraulic Engineering, 139(6), 621–629. DOI: http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000711

    Article  Google Scholar 

  • Raikar RV, Dey S, 2008. Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder. Journal of hydraulic research, 46(2), 247–264.

    Article  Google Scholar 

  • Rao AR, Sitaram N, 1999. Stability and mobility of sand-bed channels affected by seepage. Journal of Irrigation and Drainage Engineering, 125(6), 370–379.

    Article  Google Scholar 

  • Raudkivi AJ, Ettema R, 1983. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338–350.

    Article  Google Scholar 

  • Sarkar K, Chakraborty C, Mazumder B, 2015. Space-time dynamics of bed forms due to turbulence around submerged bridge piers. Stochastic Environmental Research and Risk Assessment, 29(3), 995–1017. DOI: 10.1007/s00477-014-0961-9

    Article  Google Scholar 

  • Shen HW, Schneider VR, Karaki S, 1969. Local scour around bridge piers. Journal of Hydraulic Engineering, 95(6), 1919–1940.

    Google Scholar 

  • Shukla MK, Misra GC, 1994. Canal discharge and seepage relationship. Proc., 6th Nat Symposium on Hydro. NIH, Shilong, India, 263–274.

    Google Scholar 

  • Tanji KK, Kielen NC, 2002. Agricultural drainage water management in arid and semiarid areas. Irrig. Drain. Paper 61. FAO, Rome.

    Google Scholar 

  • Taylor GI, 1935. Statistical theory of turbulence. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 151(873), 421–444.

    Article  MATH  Google Scholar 

  • Tennekes H, Lumley JL, 1972. A first course in turbulence. MIT press.

    MATH  Google Scholar 

  • Venditti JG, Church MA, Bennett SJ, 2005. Bed form initiation from a flat sand bed. Journal of Geophysical Research: Earth Surface, 110(F1), F01009. DOI: 10.1029/2004JF000149

    Article  Google Scholar 

  • Wilcox DC, 2006. Turbulence modeling for CFD. 3rd edition, DCW Industries, La Canada, CA, USA, 124–126.

    Google Scholar 

  • Yalin MS, 1972. Mechanics of sediment transport. Pergamon Press, Oxford, 290.

    Google Scholar 

  • Zarrati AR, Gholami H, Mashahir MB, 2004. Application of collar to control scouring around rectangular bridge piers. Journal of Hydraulic Research, 42(1), 97–103. DOI: http://dx.doi.org/10.1080/00221686.2004.9641188

    Article  Google Scholar 

  • Zarrati, A. R., Nazariha, M., & Mashahir, M. B. 2006. Reduction of local scour in the vicinity of bridge pier groups using collars and riprap. Journal of Hydraulic Engineering, 132(2), 154–162.

    Article  Google Scholar 

  • Zhao Y, Zong Z, Zou L, Wang TL, 2015. Turbulence model investigations on the boundary layer flow with adverse pressure gradients. Journal of Marine Science and Application, 14(2), 170–174. DOI: 10.1007/s11804-015-1303-0

    Article  Google Scholar 

  • Zhuang Y, Liu ZY, 2007. Experimental study on the width of the turbulent area around bridge pier. Journal of Marine Science and Application, 6(1), 53–57. DOI: 10.1007/s11804-007-6048-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutuja Chavan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, R., Sharma, A. & Kumar, B. Effect of downward seepage on turbulent flow characteristics and bed morphology around bridge piers. J. Marine. Sci. Appl. 16, 60–72 (2017). https://doi.org/10.1007/s11804-017-1394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-017-1394-x

Keywords

Navigation