Skip to main content
Log in

Metabolomic Fingerprint of the Model Ciliate, Tetrahymena thermophila Determined by Untargeted Profiling Using Gas Chromatography-Mass Spectrometry

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The ciliate Tetrahymena is a valuable model organism in the studies of ecotoxicology. Changes in intracellular metabolism are caused by exogenous chemicals in the environment. Intracellular metabolite changes signify toxic effects and can be monitored by metabolomics analysis. In this work, a protocol for the GC-MS-based metabolomic analysis of Tetrahymena was established. Different extraction solvents showed divergent effects on the metabolomic analysis of Tetrahymena thermophila. The peak intensity of metabolites detected in the samples of extraction solvent Formula 1 (F1) was the strongest and stable, while 61 metabolites were identified. Formula 1 showed an excellent extraction performance for carbohydrates. In the samples of extraction solvent Formula 2 (F2), 66 metabolites were characterized, and fatty acid metabolites were extracted. Meanwhile, 57 and 58 metabolites were characterized in the extraction with Formula 3 (F3) and Formula 4 (F4), respectively. However, the peak intensity of the metabolites was low, and the metabolites were unstable. These results indicated that different extraction solvents substantially affected the detected coverage and peak intensity of intracellular metabolites. A total of 74 metabolites (19 amino acids, 11 organic acids, 2 inorganic acids, 11 fatty acids, 11 carbohydrates, 3 glycosides, 4 alcohols, 6 amines, and 7 other compounds) were identified in all experimental groups. Among these metabolites, amino acids, glycerol, myoinositol, and unsaturated fatty acids may become potential biomarkers of metabolite set enrichment analysis for detecting the ability of T. thermophila against environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aliferis, K. A., and Jabaji, S., 2011. Metabolomics–A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pesticide Biochemistry and Physiology, 100: 105–117.

    Article  Google Scholar 

  • Barbosa, G. B., Jayasinghe, N. S., Natera, S. H., Inutan, E. D., Peteros, N. P., and Roessner, U., 2017. From common to rare zingiberaceae plants_A metabolomics study using GC-MS. Phytochemistry, 140: 141–150.

    Article  Google Scholar 

  • Bo, T., Liu, M., Zhong, C., Zhang, Q., Su, Q., Tan, Z., Han, P., and Jia, S., 2014. Metabolomic analysis of antimicrobial mechanisms of ε-poly-l-lysine on Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 62: 4454–4465.

    Article  Google Scholar 

  • Bonnet, J. L., Bonnemoy, F., Dusser, M., and Bohatier, J., 2008. Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Archives of Environmental Contamination and Toxicology, 55: 576–583.

    Article  Google Scholar 

  • Bricheux, G., Bonnet, J. L., Bohatier, J., Morel, J. P., and Morel-Desrosiers, N., 2013. Microcalorimetry: A powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis. Ecotoxicology and Environmental Safety, 98: 88–94.

    Article  Google Scholar 

  • Bundy, J. G., Davey, M. P., and Viant, M. R., 2009. Environ mental metabolomics: A critical review and future perspectives. Metabolomics, 5: 3.

  • Cao, B., Aa, J., Wang, G., Wu, X., Liu, L., Li, M., Shi, J., Wang, X., Zhao, C., and Zheng, T., 2011. GC-TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization. Analytical and Bioanalytical Chemistry, 400: 2983–2993.

    Article  Google Scholar 

  • Chen, T., Liu, Y., Li, M.-H., Xu, H., Sheng, J., Zhang, L., and Wang, J., 2016a. Integrated 1H NMR-based metabolomics analysis of earthworm responses to sub-lethal Pb exposure. Environmental Chemistry, 13: 792–803.

    Article  Google Scholar 

  • Chen, X., Gao, S., Liu, Y., Wang, Y., Wang, Y., and Song, W., 2016b. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila. Science China Life Science, 59: 909–19.

    Article  Google Scholar 

  • Chen, X., Wang, Y. R., Sheng, Y. L., Warren, A., and Gao, S., 2018. GPSit: An automated method for evolutionary analysis of nonculturable ciliated microeukaryotes. Molecular Ecology Resources, 18: 700–713.

    Article  Google Scholar 

  • Collins, K., and Gorovsky, M. A., 2005. Tetrahymena thermophila. Current Biology, 15: 317–318.

    Article  Google Scholar 

  • Ding, M., Wang, X., Yang, Y., and Yuan, Y., 2011. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. Omics, 15: 647–653.

    Article  Google Scholar 

  • Ekman, D., Teng, Q., Jensen, K., Martinovic, D., Villeneuve, D., Ankley, G., and Collette, T., 2007. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures. Aquatic Toxicology, 85: 104–112.

    Article  Google Scholar 

  • Evans, R. I., McClure, P. J., Gould, G. W., and Russell, N. J., 1998. The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum. International Journal of Food Microbiology, 40: 159–167.

    Article  Google Scholar 

  • Feng, L., Fu, C., Yuan, D., and Miao, W., 2014. A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation. Aquatic Toxicology, 149: 126–132.

    Article  Google Scholar 

  • Gao, S., Xiong, J., Zhang, C., Berquist, B. R., Yang, R., Zhao, M., Molascon, A. J., Kwiatkowski, S. Y., Yuan, D., Qin, Z., Wen, J., Kapler, G. M., Andrews, P. C., Miao, W., and Liu, Y., 2013. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes & Development, 27: 1662–79.

    Article  Google Scholar 

  • García-Cañaveras, J. C., López, S., Castell, J. V., Donato, M. T., and Lahoz, A., 2016. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells. Analytical and Bio-analytical Chemistry, 408: 1217–1230.

    Article  Google Scholar 

  • Gillis, J. D., Price, G. W., and Prasher, S., 2017. Lethal and sublethal effects of triclosan toxicity to the earthworm Eisenia fetida assessed through GC-MS metabolomics. Journal of Hazardous Materials, 323: 203–211.

    Article  Google Scholar 

  • Heijne, W. H., Kienhuis, A. S., Van Ommen, B., Stierum, R. H., and Groten, J. P., 2005. Systems toxicology: Applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology. Expert Review of Proteomics, 2: 767–780.

    Article  Google Scholar 

  • Ibáñez, C., Simó, C., Palazoglu, M., and Cifuentes, A., 2017. GC-MS based metabolomics of colon cancer cells using different extraction solvents. Analytica Chimica Acta, 986: 48–56.

    Article  Google Scholar 

  • Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros-Inostroza, A., Steinhauser, D., Selbig, J., and Willmitzer, L., 2010. Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6: 364.

    Article  Google Scholar 

  • Li, W., Li, H., Zhang, J., and Tian, X., 2015. Effect of melamine toxicity on Tetrahymena thermophila proliferation and metallothionein expression. Food and Chemical Toxicology, 80: 1–6.

    Article  Google Scholar 

  • Liu, M., Zhong, C., Wu, X., Wei, Y., Bo, T., Han, P., and Jia, S., 2015. Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. Biochemical Engineering Journal, 101: 85–98.

    Article  Google Scholar 

  • Luo, H., Li, X., Fang, T., Liu, P., Zhang, C., Xie, H., and Sun, E., 2015. The toxicity of binary mixture of Cu (II) ion and phenols on Tetrahymena thermophila. Ecotoxicology and Environmental Safety, 113: 412–417.

    Article  Google Scholar 

  • Oliveros, J. C., 2015. VENNY. An interactive tool for comparing lists with Venn diagrams. {rs http://bioinfogp.cnb.csic.es/ url}tools/venny/index.html.

    Google Scholar 

  • Ralston-Hooper, K., Hopf, A., Oh, C., Zhang, X., Adamec, J., and Sepúlveda, M. S., 2008. Development of GCxGC/TOFMS metabolomics for use in ecotoxicological studies with invertebrates. Aquatic Toxicology, 88: 48–52.

    Article  Google Scholar 

  • Sauvant, N., Pepin, D., and Piccinni, E., 1999. Tetrahymena pyriformis: A tool for toxicological studies. Chemosphere, 38: 1631–1669.

    Article  Google Scholar 

  • Viant, M. R., Pincetich, C. A., and Tjeerdema, R. S., 2006. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1 H NMR metabolomics. Aquatic Toxicology, 77: 359–371.

    Article  Google Scholar 

  • Wang, C. D., Zhang, T. T., Wang, Y. R., Katz, L. A., Gao, F., and Song, W., 2017. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: Impacts of copy number variation and experimental errors. Proceedings of the Royal Society B: Biological Sciences, 284: 20170425.

    Article  Google Scholar 

  • Wang, Y. Y., Chen, X., Sheng, Y., Liu, Y., and Gao, S., 2017a. N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Research, 45: 11594–11606.

    Article  Google Scholar 

  • Wang, Y. Y., Sheng, Y., Liu, Y., Pan, B., Huang, J., Warren, A., and Gao, S., 2017b. N(6)-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. European Journal of Protistology, 58: 94–102.

    Article  Google Scholar 

  • Wang, Y. R., Wang, Y., Sheng, Y., Huang, J., Chen, X., Al-Rasheid, K. A. S., and Gao, S., 2017c. A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. European Journal of Protistology, 61: 376–387.

    Article  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., and Wishart, D. S., 2009. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37: 652–660.

    Article  Google Scholar 

  • Xiong, J., Gao, S., Dui, W., Yang, W., Chen, X., Taverna, S. D., Pearlman, R. E., Ashlock, W., Miao, W., and Liu, Y., 2016. Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin. Nucleic Acids Research, 44: 10091–10105.

    Article  Google Scholar 

  • Xu, J., Yuan, Y., Liang, A., and Wang, W., 2015. Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Scientific Reports, 5: 10243.

    Article  Google Scholar 

  • Zhang, T. T., Wang, C. D., Katz, L. A., and Gao, F., 2018. A paradox: Rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protist, Ciliophora). Science China Life Science, 61: 1071–1078.

    Article  Google Scholar 

  • Zhao, X. L., Wang, Y. Y., Wang, Y. R., Liu, Y., and Gao, S., 2017. Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. Science China Life Science, 60: 264–270.

    Article  Google Scholar 

  • Zhao, Y., Yi, Z. Z., Warren, A., and Song, W. B., 2018. Species delimitation for the molecular taxonomy and ecology of a widely distributed microbial eukaryotes genus Euplotes (Alveolata, Ciliophora). Proceedings of the Royal Society B: Biological Sciences, 285: 20172159.

    Article  Google Scholar 

  • Zhou, X., Wang, Y., Yun, Y., Xia, Z., Lu, H., Luo, J., and Liang, Y., 2016. A potential tool for diagnosis of male infertility: Plasma metabolomics based on GC-MS. Talanta, 147: 82–89.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 31572253, 31601857, 31702009), the Science Foundation for Youths of Shanxi Province (No. 201801D221241), and the Postdoctoral Science Foundation of China (No. 2014M551961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Bo, T., Song, W. et al. Metabolomic Fingerprint of the Model Ciliate, Tetrahymena thermophila Determined by Untargeted Profiling Using Gas Chromatography-Mass Spectrometry. J. Ocean Univ. China 18, 654–662 (2019). https://doi.org/10.1007/s11802-019-3974-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3974-7

Key words

Navigation