Skip to main content
Log in

Studies on Factors Influencing Hydrodynamic Characteristics of Plates Used in Artificial Reefs

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ANSYS–Inc, 2013. ANSYS Fluent Theory Guide, Release 15.0.

    Google Scholar 

  • Antsulevich, A. E., 1994. Artificial reefs project for improvement of water quality and environmental enhancement of Neva Bay (St. Petersburg County region). Bulletin of Marine Science, 55 (2–3): 1189–1192.

    Google Scholar 

  • Cui, Y., Guan, C. T., Wan, R., Li, J., and Huang, B., 2009. Research and numerical simulation on features of flow field around artificial reefs. Journal of System Simulation, 21 (23): 7393–7396. DOI: 10.16182/j.cnki.joss.2009.23.007 (in Chinese with English abstract)

    Google Scholar 

  • Cui, Y., Guan, C. T., Wan, R., Li, J., and Huang, B., 2011. Numerical simulation on influence of disposal space on effects of flow field around artificial reefs. Transactions of Oceanology and Limnology, 22 (2): 59–65 (in Chinese with English abstract).

    Google Scholar 

  • Jiang, Z. Y., Liang, Z. L., Zhu, L. X., and Liu, Y., 2016. Numerical simulation of effect of guide plate on flow field of artificial reef. Ocean Engineering, 116: 236–241. DOI: 10. 1016/j.oceaneng. 2016.03.005.

    Article  Google Scholar 

  • Kageyama, Y., Osaka, H., Yamada, H., Hasegawa, H., and Nakakura, Y., 1981. Water tunnel visualization around the perforated cube: 1st report, flow visualization in a center plane. Memoirs of the Faculty of Engineering Yamaguchi University, 31: 351–359 (in Japanese).

    Google Scholar 

  • Kim, D., Woo, J., Yoon, H. S., and Na, W. B., 2014. Wake lengths and structural responses of Korean general artificial reefs. Ocean Engineering, 92: 83–91. DOI: 10.1016/j.oceaneng. 2014.09.040.

    Article  Google Scholar 

  • Kim, D., Woo, J., Yoon, H. S., and Na, W. B., 2016. Efficiency, tranquillity and stability indices to evaluate performance in the artificial reef wake region. Ocean Engineering, 122: 253–261. DOI: 10.1016/j.oceaneng.2016.06.030.

    Article  Google Scholar 

  • Li, J., Zheng, Y. X., Gong, P. H., and Guan, C. T., 2017. Numerical simulation and PIV experimental study of the effect of fl ow fields around tube artificial reefs. Ocean Engineering, 134: 96–104. DOI: 10.1016/j.oceaneng.2017.02.016.

    Article  Google Scholar 

  • Liu, J., Huang, H. L., Chen, S., Wu, Y., Li, L. Z., and Rao, X., 2014. Model test of the hydrodynamic characteristics of two vertical cambered V type otter boards. Chinese Journal of Hydrodynamics, 29 (2): 183–188. DOI: 10.3969/j.issn1000–4874.2014.02.007 (in Chinese with English abstract).

    Google Scholar 

  • Liu, J., Xu, L. X., Zhang, S., and Huang, H. L., 2011. Research on model experiments of the resistance coefficient of artificial reefs. Periodical of Ocean University of China, 41 (10): 35–39 (in Chinese with English abstract).

    Google Scholar 

  • Liu, T. L., and Su, D. T., 2013. Numerical analysis of the influence of reef arrangements on artificial reef flow fields. Ocean Engineering, 74 (6): 81–89. DOI: 10.1016/j.oceaneng. 2013.09.006.

    Article  Google Scholar 

  • Liu, Y., Zhao, Y., Dong, G., Guan, C., Cui, Y., and Xu, T. J., 2013. A study of the flow field characteristics around star–shaped artificial reefs. Journal of Fluids & Structures, 39 (5): 27–40. DOI: 10.1016/j.jfluidstructs.2013.02.018.

    Article  Google Scholar 

  • Mellibovsky, F., Prat, J., Notti, E., and Sala, A., 2015. Testing otter board hydrodynamic performances in wind tunnel facilities. Ocean Engineering, 104: 52–62. DOI: 10.1016/j.ocean eng.2015.04.064.

    Article  Google Scholar 

  • Nisugi, K., Hayase, T., and Shirai, A., 2004. Fundamental study of hybrid wind tunnel integrating numerical simulation and experiment in analysis of flow field. Jsme International Journal, 47 (3): 593–604. DOI: 10.1299/jsmeb.47.593.

    Article  Google Scholar 

  • Profito, F. J., Giacopini, M., Zachariadis, D. C., and Dini, D., 2015. A general finite volume method for the solution of the Reynolds lubrication equation with a mass–conserving cavitation model. Tribology Letters, 60 (1): 18. DOI: 10.1007/s11249–015–0588–0.

    Article  Google Scholar 

  • Relini, G., Relini, M., Palandri, G., Merello, S., and Beccornia, E., 2007. History, ecology and trends for artificial reefs of the Ligurian Sea, Italy. Hydrobiologia, 580 (1): 193–217. DOI: 10.1007/s10750–006–0453–0.

    Article  Google Scholar 

  • Ross, A. N., Arnold, S., Vosper, S. B., Mobbs, S., Dixon, N., and Robins, A. G., 2004. A comparison of wind–tunnel experiments and numerical simulations of neutral and stratified flow over a hill. Boundary–Layer Meteorol, 113 (3): 427–459. DOI: 10.1023/B:BOUN.0000045499.18839.7d.

    Article  Google Scholar 

  • Su, D. T., Liu, T. L., and Ou, C. H., 2008. Numerical investigation into effects of seabed topography on flows in and around artificial reefs. Fisheries Science, 74 (2): 236–254. DOI: 10.1111/j.1444–2906.2008.01518.x.

    Article  Google Scholar 

  • Takahashi, Y., Fujimori, Y., Hu, F., Shen, X., and Kimura, N., 2015. Design of trawl otter boards using computational fluid dynamics. Fisheries Research, 161: 400–407. DOI: 10.1016/j. fishres.2014.08.011.

    Article  Google Scholar 

  • Woo, J., Kim, D., Yoon, H. S., and Na, W. B., 2014. Characterizing Korean general artificial reefs by drag coefficients. Ocean Engineering, 82 (10): 105–114. DOI: 10.1016/j.ocean eng.2014.02.025.

    Article  Google Scholar 

  • Xu, Q. C., Huang, L. Y., Zhao, F. F., Wang, X. X., Tang, Y. L., Liang, Z. L., Wan, R., Sun, P., and Liu, C. D., 2017. Study on the hydrodynamic characteristics of the rectangular V–type otter board using computational fluid dynamics. Fisheries Science, 83 (2): 1–10. DOI: 10.1007/s12562–017–1065–5.

    Article  Google Scholar 

  • Zheng, Y. X., Liang, Z. L., Guan, C. T., Song, X. F., Li, J., Cui, Y., Li, Q., and Zhou, Y., 2015, Numerical simulation and experimental study of the effects of disposal space on the flow field around the combined three–tube reefs. China Ocean Engineering, 29 (3): 445–458. DOI: 10.1007/s13344–015–0031–1.

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by Shandong Provincial Oceanic and Fishery Department (Ecological Simulation Test of the Offshore Area in Shandong Peninsula) and the Primary Research and Development Program of Shandong Province (Nos. 2016CYJS04A01 and 2017CXGC0107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenfang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Yang, W., Sun, L. et al. Studies on Factors Influencing Hydrodynamic Characteristics of Plates Used in Artificial Reefs. J. Ocean Univ. China 18, 193–202 (2019). https://doi.org/10.1007/s11802-019-3706-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3706-z

Key words

Navigation