Skip to main content
Log in

Effects of Temperature and Salinity on Oxygen Consumption and Ammonium Excretion Rate of ♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus Juveniles

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The impact of water temperature (24, 27, 30 and 33°C) and salinity (15, 20, 25, 30 and 33) on oxygen consumption (OCR) and ammonium excretion rate (AER) of ♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus hybrid grouper juveniles (9.39 ± 0.07 g) were investigated under the fed and un-fed conditions. The results showed that the OCR and AER were significantly (P < 0.05) affected by temperature and salinity under both fed and un-fed conditions. When temperature was 24–33°C, the OCR and AER of fed hybrid grouper juveniles were 85.68%–129.52% and 125.78%–287.63%, respectively, higher than those of un-fed hybrid grouper juveniles. The O/N ratio, protein use (Pu), Q10(respiration) and Q10(excretion) of fed hybrid grouper juveniles were 14.43–24.01, 28.35%–48.48%, 1.69 and 3.01, respectively. The O/N ratio, Pu, Q10(respiration), Q10(excretion) of un-fed hybrid grouper juveniles were 20.39–31.79, 22.16%–34.34%, 1.23 and 1.17, respectively. When salinity was 15–33, the OCR and AER of fed hybrid grouper juveniles increased by 87.42%–116.85% and 215.38%–353.57%, respectively, over those of un-fed hybrid grouper juveniles. The O/N ratio and Pu of fed hybrid grouper juveniles were 14.48–17.78, 39.36%–49.43%, respectively. The O/N ratio and Pu of un-fed hybrid grouper juveniles were 20.39–31.79 and 22.16%–34.34%, respectively. The specific dynamic action (SDA) of hybrid grouper juveniles was mainly related to protein metabolism. The results had a guiding significance to the large-scale intensive aquaculture of hybrid grouper juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsop, D. H., Kieffer, J. D., and Wood, C. M., 1999. The O/N ature and swimming speed on instantaneous fuel use and nitrogenous waste excretion of the Nile tilapia. Physiological and Biochemical Zoology, 72: 474–483.

    Article  Google Scholar 

  • Aristizabal Abud, E. O., 1992. Effects of salinity and weight on routine metabolism in the juvenile croaker, Micropogonias furnieri (Desmarest 1823). Journal of Fish Biology, 40: 471–472.

    Article  Google Scholar 

  • Bower, C. E., and Holm–Hansen, T., 1980. A salicylate–hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Sciences, 37: 794–798.

    Article  Google Scholar 

  • Cai, Y., and Summerfelt, R. C., 1992. O/N ature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture, 104: 127–138.

    Article  Google Scholar 

  • Cao, F., and Wang, H., 2015. Effects of salinity and body mass on oxygen consumption and ammonia excretion of mudskipper Boleophthalmus pectinirostris. Chinese Journal of Oceanology and Limnology, 33: 92–98.

    Article  Google Scholar 

  • Crisp, M., Davenport, J., and Shumway, S. E., 1978. Effects of feeding and of chemical stimulation on the oxygen uptake of Nassarius reticulatus (Gastropoda: Prosobranchia). Journal of the Marine Biological Association of the United Kingdom, 58: 387–399.

    Article  Google Scholar 

  • De, M., Ghaffar, M. A., and Das, S. K., 2014. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). AIP Conference Proceedings, 1614 (1): 616–618.

    Article  Google Scholar 

  • De, M., Ghaffar, M. A., Bakar, Y., and Das, S. K., 2016. Effect of temperature and diet on growth and gastric emptying time of the hybrid, Epinephelus fuscoguttatus ? × E. lanceolatus ?. Aquaculture Reports, 4: 118–124.

    Article  Google Scholar 

  • Degani, G., Gallagher, M. L., and Meltzer, A., 1989. The influence of body size and temperature on oxygen consumption of the European eel, Anguilla anguilla. Journal of Fish Biology, 34: 19–24.

    Article  Google Scholar 

  • Ellington, W. R., and Lawrence, J. M., 1974. Coelomic fluid volume regulation and isosmotic intracellular regulation by Luidia clathrata (Echinodermata: Asteroidea) in response to hyposmotic stress. Biological Bulletin, 146: 20–31.

    Article  Google Scholar 

  • Fry, F. E. J., 1971. 1 The effect of environmental factors on the physiology of fish. Fish physiology, 34: 1–98.

    Google Scholar 

  • Gracia–Lopez, V., Rosas–Vazquez, C., and Brito–Perez, R., 2006. Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145: 340–345.

    Article  Google Scholar 

  • Hyman, L. H., Willier, B. H., and Rifenburgh, S. A., 1924. Physiological studies on Planaria. VI. A respiratory and histochemical investigation of the source of the increased metabolism after feeding. Journal of Experimental Zoology, 40: 473–494.

    Google Scholar 

  • Jobling, M., 1981. The influences of feeding on the metabolic rate of fishes: A short review. Journal of Fish Biology, 18: 385–400.

    Article  Google Scholar 

  • Jobling, M., 1985. Physiological and social constraints on growth of fish with special reference to Arctic charr, Salvelinus alpinus L. Aquaculture, 44: 83–90.

    Article  Google Scholar 

  • Jobling, M., 1997. Temperature and growth: Modulation of growth rate via temperature change. Society for Experimental Biology Seminar Series, 61: 225–253.

    Google Scholar 

  • Kita, J., Tsuchida, S., and Setoguma, T., 1996. Temperature preference and tolerance, and oxygen consumption of the marbled rockfish, Sebastiscus marmoratus. Marine Biology, 125: 467–471.

    Google Scholar 

  • Luo, Y., Wu, X., and Li, W., 2016. Effects of different corn starch levels on growth, protein input, and feed utilization of juvenile hybrid grouper (male Epinephelus lanceolatus × female E. fuscoguttatus). North American Journal of Aquaculture, 78: 168–173.

    Article  Google Scholar 

  • Mosser, M. L., and Hettler, W. F., 1989. Routine metabolism of juvenile spot, Leiostomus xanthurus. Journal of Fish Biology, 35: 703–707.

    Article  Google Scholar 

  • Mustafa, S., Senoo, S., and Luin, M., 2013. Response of pure stock of coral reef tiger grouper and hybrid grouper to simulated ocean acidification. International Journal of Climate Change: Impacts & Responses, 5 (1): 47–54.

    Google Scholar 

  • Rao, K. P., and Bullock, T. H., 1954. Q10 as a function of size and habitat temperature in poikilotherms. American Naturalist, 88: 33–44.

    Article  Google Scholar 

  • Sabourin, T. D., and Stickle, W. B., 1981. Effects of salinity on respiration and nitrogen excretion in two species of echinoderms. Marine Biology, 65: 91–99.

    Article  Google Scholar 

  • Saucedo, P. E., Ocampo, L., Monteforte, M., and Bervera, H., 2004. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother–of–pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture, 229: 377–387.

    Article  Google Scholar 

  • Shiau, S. Y., and Lan, C. W., 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture, 145: 259–266.

    Article  Google Scholar 

  • Thillart, G. V. D., and Kesbeke, F., 1978. Anaerobic production of carbon dioxide and ammonia by goldfish Carassius auratus (L.). Comparative Biochemistry and Physiology Part A: Physiology, 59 (4): 393–400.

    Article  Google Scholar 

  • Timmons, M. B., Ebeling, J. M., Wheaton, F. W., Summerfelt, S. T., and Vinci, B. J., 2002. Recirculating Aquaculture Systems. 2nd edition. Cayuga Aqua Ventures, NY, 769pp.

    Google Scholar 

  • Tucker, J. W., 1999. Grouper aquaculture. Southern Regional Aquaculture Center Publication, 721: 1–11.

    Google Scholar 

  • Wright, P. A., Part, P., and Wood, C. M., 1995. Ammonia and urea excretion in the tidepool sculpin (Oligocottus maculosus): Sites of excretion, effects of reduced salinity and mechanisms of urea transport. Fish Physiology and Biochemistry, 14: 111–123.

    Article  Google Scholar 

  • Yang, H., Zhou, Y., and Zhang, T., 2006. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. Journal of Experimental Marine Biology and Ecology, 330: 505–510.

    Article  Google Scholar 

  • Zakes, Z., and Karpinski, A., 1999. Influence of water temperature on oxygen consumption and ammonia excretion of juvenile pikeperch, Stizostedion lucioperca (L.) reared in a recirculating system. Aquaculture Research, 30 (2): 109–114.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of National Science and Technology Supporting Plan (No. 2011BAD 13B04). The fish, environmental and production data were supported by Laizhou MingBo Aquatic Co., Ltd., Yantai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiefa Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, D., Song, X., Peng, L. et al. Effects of Temperature and Salinity on Oxygen Consumption and Ammonium Excretion Rate of ♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus Juveniles. J. Ocean Univ. China 18, 177–184 (2019). https://doi.org/10.1007/s11802-019-3566-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3566-6

Key words

Navigation