Skip to main content

Advertisement

Log in

Optical properties of an Er3+-doped phosphate glass waveguide formed by single-energy H+ ion implantation

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this work, we report the fabrication of an optical waveguide by single-energy H+ ion implantation in the Er3+-doped phosphate glass. The ion implantation conditions are with energy of 0.4 MeV and a fluence of 8.0×1016 ions/cm2. The dark mode spectrum of the waveguide structure was measured by the prism coupling experiment. The refractive index change along with the penetration depth was fitted by using the reflectivity calculation method (RCM). Finally, the calculated near-field light intensity distribution shows superior waveguide properties, which demonstrates its promising potentials for compact optical integrated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Zhang Mian, Wang Cheng, Rebeca Cheng, Shams-Ansari Amirhassan and Loncar Marko, Optica 4, 1536 (2017).

    Article  Google Scholar 

  2. Ríos Carlos, Stegmaier Matthias, Hosseini Peiman, Wang Di, Scherer Torsten, Wright C. David, Bhaskaran Harish and Pernice Wolfram H. P., Nature Photonics 9, 725 (2015).

    Article  ADS  Google Scholar 

  3. Wang Lei, Haunhorst Christian E., Volk Martin F., Chen Feng and Kip Detlef, Optics Express 23, 30188 (2015).

    Article  ADS  Google Scholar 

  4. Ma Li-Nan, Tan Yang, Ghorbani-Asl M., Boettger R., Kretschmer S., Zhou S., Huang Z., Krasheninnikov A. V. and Chen Feng, Nanoscale 9, 11027 (2017).

    Article  Google Scholar 

  5. Wang Xue-Lin, Chen Feng, Wang Ke-Ming, Lu Qing-Ming, Shen Ding-Yu and Nie Rui, Applied Physics Letters 85, 1457 (2004).

    Article  ADS  Google Scholar 

  6. Hu Hui, Ricken R. and Sohler W., Applied Physics B 98, 677 (2010).

    Article  Google Scholar 

  7. Tervonen Ari, Honkanen Seppo and West Brian R., Optical Engineering 50, 071107 (2011).

    Article  ADS  Google Scholar 

  8. Tan Yang, Zhang C., Chen Feng, Liu Q. F., Jaque D. and Lu Qing-Ming, Applied Physics B 103, 837 (2011).

    Article  Google Scholar 

  9. Chen Feng and Aldana J. R. Vázquez de, Laser and Photonics Reviews 8, 251 (2014).

    Article  ADS  Google Scholar 

  10. Chen Feng, Laser and Photonics Reviews 6, 622 (2012).

    Article  ADS  Google Scholar 

  11. Vázquez G. V., Valiente R., Gómez-Salces S., Flores-Romero E., Rickards J. and Trejo-Luna R., Optics and Laser Technology 79, 132 (2016).

    Article  ADS  Google Scholar 

  12. Bányász I., Zolnai Z., Fried M., Berneschi S., Pelli S. and Nunzi-Conti G., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 326, 81 (2014).

    Article  Google Scholar 

  13. Tan Yang, Chen Feng, Wang Lei, Wang Ke-Ming and Lu Qing-Ming, Journal of the Korean Physical Society 52, S80 (2008).

    Article  ADS  Google Scholar 

  14. Wang Yue, Shen Yuan, Zheng Rin-Lin, Shen Jian-Ping, Guo Hai-Tao and Liu Chun-Xiao, Results in Physics 10, 200 (2018).

    Article  ADS  Google Scholar 

  15. Wang Yue, Shen Xiao-Liang, Zheng Rui-Lin, Guo Hai-Tao, Lv Peng and Liu Chun-Xiao, Journal of the Korean Physical Society 72, 765 (2018).

    Article  ADS  Google Scholar 

  16. Bradley Jonathan D. B. and Pollnau Markus, Laser and Photonics Reviews 5, 368 (2011).

    Article  ADS  Google Scholar 

  17. Desirena H., De la Rosa E, Diaz-Torres L. A. and Kumar G. A., Optical Materials 28, 560 (2006).

    Article  ADS  Google Scholar 

  18. Chen Chen, He Rui-Yun, Tan Yang, Wang Biao, Akhmadaliev Shavkat, Zhou Sheng-Qiang, Javier R. Vázquez de Aldana, Hu Li-Li and Chen Feng, Optical Materials 51, 185 (2016).

    Article  ADS  Google Scholar 

  19. Liu Chun-Xiao, Shen Xiao-Liang, Guo Hai-Tao, Li Wei Nan and Wei Wei, Optik 131, 132 (2017).

    Article  ADS  Google Scholar 

  20. Ziegler J. F., SRIM-The Stopping and Range of Ions in Matter, https://doi.org/www.srim.org.

  21. Chandler P. J. and Lama F. L., Optica Acta 33, 127 (1986).

    Article  ADS  Google Scholar 

  22. Rsoft Design Group, Computer software BeamPROP ver sion 8.0, https://doi.org/www.rsoftdesign.com.

  23. Tan Yang, Aldana Vázquez de Javier R. and Chen Feng, Optical Engineering 53, 107109 (2014).

    Article  ADS  Google Scholar 

  24. Wang Qing-Yang, Li Xiao-Hui and Zhang Jing-Yu, Optik 164, 721 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-xiao Liu  (刘春晓).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.11405041 and 61505084), and the Natural Science Foundation of Jiangsu Province (No.BK2015084).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Jy., Yan, S., Zheng, Rl. et al. Optical properties of an Er3+-doped phosphate glass waveguide formed by single-energy H+ ion implantation. Optoelectron. Lett. 15, 104–107 (2019). https://doi.org/10.1007/s11801-019-8103-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-019-8103-8

Document code

Navigation