Optoelectronics Letters

, Volume 13, Issue 6, pp 414–418 | Cite as

SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes

  • Yong-qian Li (李永倩)
  • Xiao-juan Li (李晓娟)
  • Han-bai Fan (范寒柏)
  • Qi An (安琪)
  • Lixin Zhang (张立欣)


The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio (SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 dB, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.

Document code


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. G. Hong, and K. Y. Song, Journal of Lightwave Technology 33, 1979 (2015).ADSCrossRefGoogle Scholar
  2. [2]
    Q. Q. Jia, H. Z. Su, L. L. Feng and M. Yang, Journal of Optoelectronics·Laser 27, 832 (2016). (in Chinese)Google Scholar
  3. [3]
    T. Wei, Journal of Optoelectronics·Laser 28, 492 (2017). (in Chinese)Google Scholar
  4. [4]
    S. M. Maughan, H. H. Kee and T. P. Newson, Measurement Science & Technology 12, 834 (2001).ADSCrossRefGoogle Scholar
  5. [5]
    X. J. Li, Y. Q. Li, Z. Q. Hu and Q. An, Journal of Optoelectronics ·Laser 27, 1286 (2016). (in Chinese)Google Scholar
  6. [6]
    G. J. Tu, X. P. Zhang, Y. X. Zhang, Z. F. Ying and L. D. Lv, Electronics Letters 50, 1624 (2014).CrossRefGoogle Scholar
  7. [7]
    H. Ohno, H. Naruse, M. Kihara and A. Shimada, Optical Fiber Technology 7, 45 (2001).ADSCrossRefGoogle Scholar
  8. [8]
    S. Adachi, Distributed Optical Fiber Sensors and Their Applications, 47th Annual Conference of the Society of Instrument and Control Engineers of Japan, 329 (2008).Google Scholar
  9. [9]
    Q. Y. Li, J. L. Gan, Y. Q. Wu, Z. S. Zhang, J. Li and Z. M. Yang, IEEE Photonics Technology Letters 28, 1493 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    N. De Battista, C. Kechavarzi and K. Soga, Proceedings of the SPIE 9916, 99160U (2016).CrossRefGoogle Scholar
  11. [11]
    T. Y. Chang, T. E. Koscica, D.Y. Li, L. Jia, Q. M. Sui and H. L. Cui, IEEE Sensors Journal 9, 430 (2009).CrossRefGoogle Scholar
  12. [12]
    R. G. Wang, L. Y. Zhou and X. P. Zhang, Optik 125, 4864 (2014).ADSCrossRefGoogle Scholar
  13. [13]
    Y. T. Cho, M. Alahbabi, M. J. Gunning and T. P. Newson, Optics Letters 28, 1651 (2003).ADSCrossRefGoogle Scholar
  14. [14]
    M. A. Soto, P. K. Sahu, G. Bolognini and F. Di Pasquale, IEEE Sensors Journal 8, 225 (2008).CrossRefGoogle Scholar
  15. [15]
    K. De Souza, Measurement Science and Technology 17, 1065 (2006).ADSCrossRefGoogle Scholar
  16. [16]
    T. H. Wood, R. A. Linke, B. L. Kasper and E. C. Carr, Journal of Lightwave Technology 6, 346 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    S. P. Wan, Y. H. Xiong and X. D. He, IEEE Sensors Journal 14, 2626 (2014).CrossRefGoogle Scholar
  18. [18]
    Q. S. Cui, S. Pamukcu, A. X. Lin, W. Xiao and J. Toulouse, Microwave and Optical Technology Letters 52, 2713 (2010).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yong-qian Li (李永倩)
    • 1
  • Xiao-juan Li (李晓娟)
    • 1
  • Han-bai Fan (范寒柏)
    • 1
  • Qi An (安琪)
    • 1
  • Lixin Zhang (张立欣)
    • 1
  1. 1.Department of Electronic and Communication EngineeringNorth China Electric Power UniversityBaodingChina

Personalised recommendations