Skip to main content
Log in

Abklärung einer stenosierenden KHK: Stress-MRT vs. CT-Koronarographie

Assessment of CAD – First pass myocardial perfusion MRI vs CT coronarography

  • Published:
Clinical Research in Cardiology Supplements Aims and scope

Zusammenfassung

Die 64-Zeilen Computertomographie (CT) stellt eine relativ junge Methode zur Abklärung einer stenosierenden koronaren Herzkrankheit (KHK) dar. Nichtinvasiv können die Koronararterien unter Gabe von Kontrastmittel in wenigen Sekunden in oft diagnostisch ausreichender Bildqualität dargestellt werden. Die assoziierte Strahlenbelastung kann bis zu 10 mSV und mehr betragen.

Das Verfahren ist geeignet für symptomatische Patienten mit Vorliegen einer stenosierenden KHK und mittlerem Risikoprofil, bei denen ein nicht verwertbarer oder nicht eindeutig interpretierbarer Stresstest im Rahmen eines Belastungs-EKGs oder einer Stressechokardiographie vorliegt. Der negative prädiktive Wert der CT beträgt für dieses Untersuchungskollektiv >90%.

Hinsichtlich der myokardialen Vitalität und der Myokarditisdiagnostik hat sich die MRT als Goldstandard etabliert. Die Magnetresonanz(MR)-Koronarographie ist für den Ausschluss einer Koronararterienstenose diagnostisch bisher nicht geeignet. Alternativ kann versucht werden, unter Gabe von Adenosin i.v. und MRT-KM i.v. eine Stress-induzierbare myokardiale Ischämie darzustellen (Stress-MRT). Hierbei ist eine medikamentöse Belastung unumgänglich. Ein Hauptproblem im Rahmen der Auswertung ist die Spezifität der MRT.

Im Vergleich MRT vs. CT zeichnet sich für die CT-Koronarographie aufgrund der Option einer nichtinvasiven Gefäßdarstellung bei geringer Anforderung an die Patientencompliance eine vielversprechende Perspektive ab.

Abstract

A rather new modality in the assessment of coronary artery disease (CAD) is 64-slice computer tomography (CT). With the help of a contrast agent, noninvasive imaging of the coronary arteries is possible often with sufficient diagnostic quality. Radiation exposure of up to 10 mSV or more has to be considered a major limitation.

64-Slice CT can be performed in symptomatic patients with an intermediate risk for the disease including an inconclusive stress test. In these cases, the negative predictive value exceeds 90%. Cardiovascular magnetic resonance imaging (CMR) represents the gold standard concerning myocardial viability and in vivo imaging of myocarditis. Currently no CMR protocol of sufficient quality can provide imaging of the coronary arteries in order to exclude CAD. Pharmacological stress testing can be performed by first pass myocardial perfusion magnetic resonance imaging (MRI) after application of adenosine i.v. Data suggest a comparably high negative predictive value; specifity represents a major limitation. When comparing both methods, the future for CT coronary angiography as a modality facilitating non-invasive exclusion of CAD within a few seconds is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kober L, Torp-Pedersen C (2007) 64-multislice detetctor computed tomography coronary angiography as a potential alternative to conventional coronary angiography: a systematic review. Eur Heart J 28:3042–3050

    Article  PubMed  Google Scholar 

  2. Achenbach S, Cardiac CT (2007) State of the Art for the Detection of Coronary Arterial Stenosis. Journal of Cardiovascular Computed Tomography 1:3–20

    Article  PubMed  Google Scholar 

  3. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK (2008) Diagnostic performance of 64-multidetetcor row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment of Coronar Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  4. Bundesärztekammer (BÄK), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, (AWMF), Kassenärztliche Bundesvereinigung (KBV) (2006) Nationale Versorgungsleitlinie Chronische KHK. http://www.khk.versorgungsleitlinien.de/

  5. Crijns, H (1995) Haemodynamic deterioration after treatment with adenosine. Br Heart J 73(1):103

    Article  CAS  PubMed  Google Scholar 

  6. Demir, H (2003) Clinical validation of technetium-99m MIBI-gated singlephoton emission computed tomography (SPECT) for avoiding false positive results in patients with left bundle-branch block: comparison with stress-rest nongated SPECT. Clin Cardiol 26(4):182–187

    Article  PubMed  Google Scholar 

  7. Dewey M, Hoffmann H, Hamm B. (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Rofo 178(6):600

    CAS  PubMed  Google Scholar 

  8. Di Bella EV (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54(5):1295–1299

    Article  CAS  PubMed  Google Scholar 

  9. Duvall, WL (2006) SPECT myocardial perfusion imaging in morbidly obese patients: Image quality, hemodynamic response to pharmacologic stress, and diagnostic and prognostic value. J Nucl Cardiol 13(2):202–209

    PubMed  Google Scholar 

  10. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  11. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, Kastrati A, Schomig A (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  12. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, McCollough C, Martinoff S, Kastrati A, Schömig A, Achenbach S (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  CAS  PubMed  Google Scholar 

  13. Hein PA, Romano VC, Lembcke A, May J, Rogalla P (2009) Initial experience with a chest pain protocol using 320-slice volume MDCT. Eur Radiol (Epub ahead of print)

  14. Heuschmid M, Burgstahler C, Reimann A, Brodoefel H, Mysal I, Haeberle E, Tsiflikas I, Claussen CD, Kopp AF, Schroeder S (2007) Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol. 100:587–592

    Article  PubMed  Google Scholar 

  15. Hunold P (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184(5):1420–1426

    PubMed  Google Scholar 

  16. Ingkanisorn W (2006) Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 47(7):1427–1432

    Article  PubMed  Google Scholar 

  17. Jahnke C (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115(13):1769–1776

    Article  PubMed  Google Scholar 

  18. Janne d’Othée B, Siebert U, Cury R, Jadvar H, Dunn EJ, Hoffmann U (2008) A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol 65(3):449–461

    Article  PubMed  Google Scholar 

  19. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  20. Kim D (2007) Improved visualization of non-transmural scar using sliceselective inversion-recovery delayed contrast-enhanced MRI: a preliminary report.NMR Biomed 20(2):121–127

    Article  PubMed  Google Scholar 

  21. Klem I (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47(8):1630–1638

    Article  PubMed  Google Scholar 

  22. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, Reiser M, Steinbeck G, Becker CR, Knez A (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  23. Lyne J (2007) Direct comparison of myocardial perfusion cardiovascular magnetic resonancesequences with parallel acquisition. J Magn Reson Imaging 26(6):1444–1451

    Article  PubMed  Google Scholar 

  24. Miller JM, Rochitte CE, Dewey M; Arbab-Zadeh, A, Niinuma H, Gottlieb I, Paul N; Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima LAC (2008) Diagnostic performance of CT coronary angiography by 64-row CT. NEJM 359:2324–2336

    Article  CAS  PubMed  Google Scholar 

  25. Ropers D, Pohle FK, Kuettner A, Pflederer T, Anders K, Daniel WG, Bautz W, Baum U, Achenbach S (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114: 2334–2341

    Article  PubMed  Google Scholar 

  26. Rybicki FJ, Melchionna S, Mitsouras D, Coskun AU, Whitmore AG, Steigner M, Nallamshetty L, Welt FG, Bernaschi M, Borkin M, Sircar J, Kaxiras E, Succi S, Stone PH, Feldman CL (2009) Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: Lattice Boltzmann evaluation of endothelial shear stress. Int J Cardiovasc Imaging (Epub ahead of print)

  27. Sievers B (2007) Rapid detection of myocardial infarction by subsecond, free-breathing delayed contrast-enhancement cardiovascular magnetic resonance. Circulation 115(2):236–244

    Article  PubMed  Google Scholar 

  28. Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, Genoni M, Flohr TG, Wildermuth S, Marincek B, Alkhadi H (2008) Dualsource CT in step-and-shoot mode: noninvasive coronar ngiography with low radiation dose. Radiology 249:71–80

    Article  PubMed  Google Scholar 

  29. Sundaram B, Patel S, Agarwal P, Kazerooni EA (2009) Anatomy and terminology for the interpretation and reporting of cardiac MDCT: part 2, CT angiography, cardiac function assessment, and noncoronary and extracardiac findings. AJR Am J Roentgenol 192(3):584–598

    Article  PubMed  Google Scholar 

  30. Weustink AC, Meijboom WB, Mollet NR, Otsuka M, Pugliese F, van Mieghem C, Malago R, van Pelt N, Dijkshoorn ML, Cademartiri F, Krestin GP, de Feyter PJ (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Kadalie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadalie, C.T. Abklärung einer stenosierenden KHK: Stress-MRT vs. CT-Koronarographie. Clin Res Cardiol Suppl 4 (Suppl 2), 135–141 (2009). https://doi.org/10.1007/s11789-009-0073-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11789-009-0073-0

Schlüsselwörter

Key words

Navigation