Advertisement

Logica Universalis

, Volume 12, Issue 1–2, pp 83–100 | Cite as

Natural Deduction for Post’s Logics and their Duals

  • Yaroslav Petrukhin
Article

Abstract

In this paper, we introduce the notion of dual Post’s negation and an infinite class of Dual Post’s finitely-valued logics which differ from Post’s ones with respect to the definitions of negation and the sets of designated truth values. We present adequate natural deduction systems for all Post’s k-valued (\(k\geqslant 3\)) logics as well as for all Dual Post’s k-valued logics.

Keywords

Natural deduction Post’s logic Post’s negation cyclic negation Dual Post’s logic many-valued logic proof theory 

Mathematics Subject Classification

Primary 03B50 Secondary 03B22 03F03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

My special thanks go to Dmitry Zaitsev, Andrzej Pietruszczak, and Mateusz Klonowski. I also extend my thanks to an anonymous referee for valuable remarks.

References

  1. 1.
    Bolotov, A., Shangin, V.: Natural deduction system in paraconsistent setting: proof search for PCont. J. Intell. Syst. 21, 1–24 (2012)CrossRefGoogle Scholar
  2. 2.
    Copi, I.M., Cohen, C., McMahon, K.: Introduction to Logic, 14th edn. Routledge, London (2011)Google Scholar
  3. 3.
    Dwinger, P.: Notes on post algebras. Indag. Math. 28, 462–478 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dwinger, P.: Generalized post algebras. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16, 559–563 (1968)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dwinger, P.: A survey of the theory of Post algebras and their generalizations. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 53–75. Reidel, Dordrecht (1977)Google Scholar
  6. 6.
    Epstein, G., Rasiowa, H.: Theory and uses of Post algebras of order \( \omega +\omega ^\ast \). Part II. In: Proceedings of 21st International Symposium on Multiple-Valued Logic, Victoria/B.C., 1991, IEEE Computer Society, New York, pp. 248–254 (1991)Google Scholar
  7. 7.
    Epstein, G., Rasiowa, H.: Theory and uses of post algebras of order \( \omega +\omega ^\ast \) I. In: Proceedings of 20th International Symposium on Multiple-Valued Logic, Charlotte/NC, 1990, IEEE Computer Society, New York, pp. 42–47 (1990)Google Scholar
  8. 8.
    Epstein, G.: The lattice theory of post algebras. Trans. Am. Math. Soc. 95, 300–317 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock (2001)zbMATHGoogle Scholar
  10. 10.
    Hazen, A., Pelletier, F.J.: Gentzen and Jaśkowski natural deduction: fundamentally similar but importantly different. Stud. Log. 102, 1103–1142 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kirin, V.: Gentzen’s method for the many-valued propositional calculi. Z. Math. Log. Grundl. Math. 12, 317–332 (1966)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kirin, V.: Post algebras as semantic bases of some many-valued logics. Fund. Math. 63, 279–294 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kooi, B., Tamminga, A.: Completeness via correspondence for extensions of the logic of paradox. Rev. Symb. Logic 5, 720–730 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Petrukhin, Y., Shangin, V.: Automated correspondence analysis for the binary extensions of the logic of paradox. Rev. Symb. Logic 10, 756–781 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Post, E.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163–185 (1921)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rasiowa, H.: On generalised Post algebras of order \( \omega ^+ \) and \( \omega ^+ \)-valued predicate calculi. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21, 209–219 (1973)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rasiowa, H.: An Algebraic Approach to Non-Classical Logics. PWN, Warsaw and North-Holland Publishing Company, Amsterdam (1974)zbMATHGoogle Scholar
  18. 18.
    Rasiowa, H.: Post algebras as a semantic foundation of m-valued logic. Stud. Math. 9, 92–142 (1974)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rescher, N.: Many-Valued Logic. McGraw Hill, New York (1969)zbMATHGoogle Scholar
  20. 20.
    Rosenberg, I.: The number of maximal closed classes in the set of functions over a finite domain. J. Comb. Theory 14, 1–7 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rosenbloom, P.C.: Post algebras I, Postulates and general theory. Am. J. Math. 64, 167–188 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rousseau, G.: Sequents in many-valued logic I. Fund. Math. 60, 23–33 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rousseau, G.: Logical systems with finitely many truth-values. Bull. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 17, 189–194 (1969)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rousseau, G.: Post algebras and pseudo-post algebras. Fund. Math. 67, 133–145 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rousseau, G.: Sequents in many-valued logic II. Fund. Math. 67, 125–131 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Saloni, Z.: The sequent Gentzen system for m-valued logic. Bull. Sect. Logic 2, 30–37 (1973)MathSciNetGoogle Scholar
  27. 27.
    Tamminga, A.: Correspondence analysis for strong three-valued logic. Log. Investig. 20, 255–268 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Traczyk, T.: Axioms and some properties of Post algebras. Colloq. Math. 10, 193–209 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Traczyk, T.: An equational definition of a class of post algebras. Bull. Acad. Polon. Sci. 12, 147–149 (1964)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Traczyk, T.: On Post algebras with uncountable chain of constants. Algebras and homomorphisms. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15, 673–680 (1967)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Logic, Faculty of PhilosophyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations