Advertisement

Landau-Type Theorems of Polyharmonic Mappings and log-p-Harmonic Mappings

  • Xiao-Xia Bai
  • Ming-Sheng Liu
Article
  • 63 Downloads

Abstract

In this paper, we first establish three new Landau-type theorems of polyharmonic mappings, which extend the related results of biharmonic mappings of earlier authors. Then three new Landau-type theorems of log-p-harmonic mappings are also provided.

Keywords

Landau-type theorem Polyharmonic mappings Log-p-harmonic mappings Univalent 

Mathematics Subject Classification

Primary 30C99 Secondary 30C62 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for making many valuable suggestions that improved the quality and the readability of this paper. The research was financially supported by Guangdong Natural Science Foundation (Grant No.2014A030313422).

References

  1. 1.
    Chen, H.-H., Gauthier, P.M., Hengartner, W.: Bloch constants for planar harmonic mappings. Proc. Am. Math. Soc. 128, 3231–3240 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, S.H., Ponnusamy, S., Wang, X.: Bloch constant and Landau’s theorem for planar p-harmonic mappings. J. Math. Anal. Appl. 373, 102–110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, S.H., Ponnusamy, S., Wang, X.: Coefficient estimates and Landau–Bloch’s constant for harmonic mappings. Bull. Malays. Math. Sci. Soc. (2) 34(2), 255–265 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38(4), 829–840 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dorff, M., Nowark, M.: Landau’s theorem for planar harmonic mappings. Comput. Methods Funct. Theory 4, 151–158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grigoryan, A.: Landau and Bloch theorems for planar harmonic mappings. Complex Var. Elliptic Equ. 51, 81–87 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Landau, E.: Der Picard–Schottysche Satz und die Blochsche Konstanten, pp. 467–474. Sitzungsber Press, Berlin (1929)Google Scholar
  8. 8.
    Li, D.Z., Chen, X.D.: Bloch constant of harmonic mappings. J. Huaqiao Univ. (Nat. Sci.) 33(1), 103–106 (2012)Google Scholar
  9. 9.
    Li, P., Ponnusamy, S., Wang, X.: Some properties of planar \(p\)-harmonic and log-\(p\)-harmonic mappings. Bull. Malays. Math. Sci. Soc. (2) 36(3), 595–609 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Li, P., Wang, X.: Landau’s theorem for log-p-harmonic mappings. Appl. Math. Comput. 218, 4806–4812 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Liu, M.S.: Landau’s theorems for biharmonic mappings. Complex Var. Elliptic Equ. 53, 843–855 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, M.S.: Estimates on Bloch constants for planar harmonic mappings. Sci. China Ser. A Math. 52(1), 87–93 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, M.S.: Landau’s theorems for planar harmonic mappings. Comput. Math. Appl. 57(7), 1142–1146 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, M.S., Liu, Zhen-Xing: Landau-type theorems for p-harmonic mappings or log-p-harmonic mappings. Appl. Anal. 51(1), 81–87 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, M.S., Xie, L., Yang, L.M.: Landau’s theorems for biharmonic mappings(II). Math. Methods Appl. Sci. 40(7), 2582–2595 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mao, Zh, Ponnusamy, S., Wang, X.: Schwarzian derivative and Landau’s theorem for logharmonic mappings. Complex Var. Elliptic Equ. 58(8), 1093–1107 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Xia, X.Q., Huang, X.Z.: Estimates on Bloch constants for planar bounded harmonic mappings (in chinese). Chin. Ann. Math. 31A(6), 769–776 (2010)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations